333 resultados para Birdcage Coils


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the effect of rib stiffeners on the free and forced vibration of a gradient coil in a Magnetic Resonance Imaging (MRI) scanner. Several reinforcement schemes are studied in this paper. One scheme utilizes the existing holes in the gradient coil structure (typically reserved for magnetic shims) to produce the reinforcement. Non-ferrous, non-magnetic carbon fibre rib stiffeners are employed to fill these holes in several ways to strengthen a gradient coil. Another scheme replaces the inner half of the gradient coil material with a grid of interconnected axial and circumferential rib stiffeners. It is found that the structural stiffness of the gradient coil increases substantially when the coil is reinforced by carbon fibre rib stiffeners. The reinforcement affects the noise and vibration response of the gradient coil structure in the following ways. It increases the frequency range of forced response of the gradient coil at low frequencies due to the increased resonant frequency of the fundamental mode of the coil. Secondly, it reduces the forced response amplitude of the coil structure (which is governed by the structural stiffness of the coil). Thirdly, it reduces the number of natural modes in the low and medium frequency range and therefore lessens the chance of the coil structure being excited resonantly by magnetic resonance signal acquisition sequences. It is shown that gradient coils modelled by solid finite element models have higher stiffness along the coil’s circumference and lower stiffness in the axial direction than those using shell finite element models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virtual 3D models of long bones are increasingly being used for implant design and research applications. The current gold standard for the acquisition of such data is Computed Tomography (CT) scanning. Due to radiation exposure, CT is generally limited to the imaging of clinical cases and cadaver specimens. Magnetic Resonance Imaging (MRI) does not involve ionising radiation and therefore can be used to image selected healthy human volunteers for research purposes. The feasibility of MRI as alternative to CT for the acquisition of morphological bone data of the lower extremity has been demonstrated in recent studies [1, 2]. Some of the current limitations of MRI are long scanning times and difficulties with image segmentation in certain anatomical regions due to poor contrast between bone and surrounding muscle tissues. Higher field strength scanners promise to offer faster imaging times or better image quality. In this study image quality at 1.5T is quantitatively compared to images acquired at 3T. --------- The femora of five human volunteers were scanned using 1.5T and 3T MRI scanners from the same manufacturer (Siemens) with similar imaging protocols. A 3D flash sequence was used with TE = 4.66 ms, flip angle = 15° and voxel size = 0.5 × 0.5 × 1 mm. PA-Matrix and body matrix coils were used to cover the lower limb and pelvis respectively. Signal to noise ratio (SNR) [3] and contrast to noise ratio (CNR) [3] of the axial images from the proximal, shaft and distal regions were used to assess the quality of images from the 1.5T and 3T scanners. The SNR was calculated for the muscle and bone-marrow in the axial images. The CNR was calculated for the muscle to cortex and cortex to bone marrow interfaces, respectively. --------- Preliminary results (one volunteer) show that the SNR of muscle for the shaft and distal regions was higher in 3T images (11.65 and 17.60) than 1.5T images (8.12 and 8.11). For the proximal region the SNR of muscles was higher in 1.5T images (7.52) than 3T images (6.78). The SNR of bone marrow was slightly higher in 1.5T images for both proximal and shaft regions, while it was lower in the distal region compared to 3T images. The CNR between muscle and bone of all three regions was higher in 3T images (4.14, 6.55 and 12.99) than in 1.5T images (2.49, 3.25 and 9.89). The CNR between bone-marrow and bone was slightly higher in 1.5T images (4.87, 12.89 and 10.07) compared to 3T images (3.74, 10.83 and 10.15). These results show that the 3T images generated higher contrast between bone and the muscle tissue than the 1.5T images. It is expected that this improvement of image contrast will significantly reduce the time required for the mainly manual segmentation of the MR images. Future work will focus on optimizing the 3T imaging protocol for reducing chemical shift and susceptibility artifacts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a three-dimensional numerical analysis of the electromagnetic forces within a high voltage superconducting Fault Current Limiter (FCL) with a saturated core under short-circuit conditions. The effects of electrodynamics forces in power transformer coils under short-circuit conditions have been reported widely. However, the coil arrangement in an FCL with saturated core differs significantly from existing reactive devices. The boundary element method is employed to perform an electromagnetic force analysis on an FCL. The analysis focuses on axial and radial forces of the AC coil. The results are compared to those of a power transformer and important design considerations are highlighted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi-2212 tapes are prepared by a combination of dip-coating and partial melt processing. We investigate the effect of re-melting of those tapes by partial melting followed by slow cooling on the structure and superconducting properties. Microstructural studies of re-melted samples show that they have the same overall composition as partially melted tapes. However, the fractional volumes of the secondary phases differ and the amounts and distribution of the secondary phases have a significant effect on the critical current. Critical current of Bi-2212/Ag tapes strongly depends on the maximum processing temperature. Initial J(c)'s of the tapes, which are partially melted, then slowly solidified at optimum conditions and finally post-annealed in an inert atmosphere, are up to 10.4 x 10(3) A/cm(2). It is found that the maximum processing temperature at initial partial melting has an influence on the optimum re-heat treatment conditions for the tapes. Re-melted tapes processed at optimum conditions recover superconducting properties after post-annealing in an inert atmosphere: the J(c) values of the tapes are about 80-110% of initial J(c)'s of those tapes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High magnification and large depth of field with a temporal resolution of less than 100 microseconds are possible using the present invention which combines a linear electron beam produced by a tungsten filament from an SX-40A Scanning Electron Microscope (SEM), a magnetic deflection coil with lower inductance resulting from reducing the number of turns of the saddle-coil wires, while increasing the diameter of the wires, a fast scintillator, photomultiplier tube, photomultiplier tube base, and signal amplifiers and a high speed data acquisition system which allows for a scan rate of 381 frames per second and 256.times.128 pixel density in the SEM image at a data acquisition rate of 25 MHz. The data acquisition and scan position are fully coordinated. A digitizer and a digital waveform generator which generates the sweep signals to the scan coils run off the same clock to acquire the signal in real-time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of a magnetic field of two magnetic coils on the ion current density distribution in the setup for low-temperature plasma deposition is investigated. The substrate of 400 mm diameter is placed at a distance of 325 mm from the plasma duct exit, with the two magnetic coils mounted symmetrically under the substrate at a distance of 140 mm relative to the substrate centre. A planar probe is used to measure the ion current density distribution along the plasma flux cross-sections at distances of 150, 230, and 325 mm from the plasma duct exit. It is shown that the magnetic field strongly affects the ion current density distribution. Transparent plastic films are used to investigate qualitatively the ion density distribution profiles and the effect of the magnetic field. A theoretical model is developed to describe the interaction of the ion fluxes with the negative space charge regions associated with the magnetic trapping of the plasmaelectrons. Theoretical results are compared with the experimental measurements, and a reasonable agreement is demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible chemical vapor deposition of ultralong carbon microcoils using acetylene precursor in the temperature range 700-750 °C. Scanning electron microscopy analysis reveals that the carbon microcoils have a unique double-helix structure and a uniform circular cross-section. It is shown that double-helix carbon microcoils have outstanding superelastic properties. The microcoils can be extended up to 10-20 times of their original coil length, and quickly recover the original state after releasing the force. A mechanical model of the carbon coils with a large spring index is developed to describe their extension and contraction. Given the initial coil parameters, this mechanical model can successfully account for the geometric nonlinearity of the spring constants for carbon micro- and nanocoils, and is found in a good agreement with the experimental data in the whole stretching process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An effective control of the ion current distribution over large-area (up to 103 cm2) substrates with the magnetic fields of a complex structure by using two additional magnetic coils installed under the substrate exposed to vacuum arc plasmas is demonstrated. When the magnetic field generated by the additional coils is aligned with the direction of the magnetic field generated by the guiding and focusing coils of the vacuum arc source, a narrow ion density distribution with the maximum current density 117 A m-2 is achieved. When one of the additional coils is set to generate the magnetic field of the opposite direction, an area almost uniform over the substrate of 103 cm2 ion current distribution with the mean value of 45 A m-2 is achieved. Our findings suggest that the system with the vacuum arc source and two additional magnetic coils can be effectively used for the effective, high throughput, and highly controllable plasma processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transitions between the two discharge modes in a low-frequency (∼460 kHz) inductively coupled plasma sustained by an internal oscillating radio frequency (rf) current sheet are studied. The unidirectional rf current sheet is generated by an internal antenna comprising two orthogonal sets of synphased rf currents driven in alternately reconnected copper litz wires. It is shown that in the low-to-intermediate pressure range the plasma source can be operated in the electrostatic (E) and electromagnetic (H) discharge modes. The brightness of the E -mode argon plasma glow is found remarkably higher than in inductively coupled plasmas with external flat spiral "pancake" coils. The cyclic variations of the input rf power result in pronounced hysteretic variations of the optical emission intensity and main circuit parameters of the plasma source. Under certain conditions, it appears possible to achieve a spontaneous E→H transition ("self-transition"). The observed phenomenon can be attributed to the thermal drift of the plasma parameters due to the overheating of the working gas. The discharge destabilizing factors due to the gas heating and step-wise ionization are also discussed. © 2005 American Vacuum Society.