972 resultados para Bioactive constituents
Resumo:
Tabebuia incana A.H. Gentry (Bignoniaceae) is a tree from the Brazilian Amazon having medicinal uses and is one several Tabebuia spp. known as pau d'arco or palo de arco in this region. Fractionation of the bark ethanolic extract afforded a mixture of 5 and 8-hydroxy-2-(1-hydroxyethyl)naphtho[2,3-b]furan-4,9-diones (1 and 2, respectively) identified on the basis of nuclear magnetic resonance (NMR), infrared (IR) and mass (MS) spectra, whose in vitro antimalarial and antitumor activity have been shown previously. This is the first study on T. incana bark, and 2 are described in this species for the first time. Also, high performance liquid chromatography (HPLC) analysis of T. incana bark tea revealed the presence of the 1 + 2 mixture peak corresponding to a concentration in the range 10-6-10-5 M. The chromatograms of teas prepared from commercial pau d' arco and T. incana bark were also studied and the presence of the 1 + 2 peak has potential for quality control of commercial plant materials.
Resumo:
Three coumarins, 5-methoxypsoralene, xanthyletin, and (-)-marmesin, have been isolated from the ethanolic extract of the stem of the Amazonian plant Brosimum potabile. The structures were determined on the basis of NMR analyses and by comparison with spectroscopic data in the literature. The analysis of the hexane fractions by GC-MS in EIMS mode suggested the presence of (1-methylpentyl)-benzene; α,α-dimethyl-4-(1-methylethyl)-benzenemethanol; 1-methyl-3,5-bis(1-methylethyl)-benzene; urs-12-ene; chola-5,22-dien-3β-ol; cholesta-4,6-dien-3β-ol; sitosteryl 9(Z)-octadecenoate; cholesta-5,22-dien-3β-ol; cholesta-4,6,22-trien-3-one; and cholesta-4,22-dien-3-one. NMR data of other hexane fractions indicated the presence of 3β-acetoxy-lup-12,20(29)-diene; 3β-acetoxy-olean-12-ene; 3β-acetoxy-urs-12-ene; and adian-5-ene. All these compounds are first described in B. potabile.
Resumo:
In the Southern Pantanal, the hyacinth macaw (Anodorhynchus hyacinthinus), an endangered species, often chooses the manduvi tree (Sterculia apetala) as a nesting site, because of its physical properties. In addition, the chemical composition of the wood may also contribute to a nesting selection by the hyacinth macaws. The objective of this study was to determine the main chemical components of S. apetala bark for two seasons, and evaluate its fungicidal potential. Bark samples from S. apetala trees with and without nests of A. hyacinthinus were collected in January (wet season) and August (dry season) of 2012. The inhibition of mycelium growth (MGI) from tree samples with and without nests were assessed using a phytochemical analysis to evaluate their antifungal activity against Trichoderma sp. Phytochemical analysis confirmed the presence of phenolic compounds and flavonoids. In both seasons, samples obtained from nested trees had higher content of total phenols than those collected from non-nested trees. The average content of total flavonoids was higher in January for samples with nest and in August for samples without nest. All selected samples showed antifungal activity, and those with nest collected in August (peak of hyacinth macaw breeding) resulted in an MGI of 51.3%. Therefore, this percentage, related to the content of flavonoids and the presence of coumarins, may influence the reproductive success of hyacinth macaws and other species of birds, in this region. This is the first chemical study report with the stem bark of S. apetala.
Resumo:
The aim of this study was to characterize sweet cherry regarding nutritional composition of the fruits, and individual phytochemicals and bioactive properties of fruits and stems. The chromatographic profiles in sugars, organic acids, fatty acids, tocopherols and phenolic compounds were established. All the preparations (extracts, infusions and decoctions) obtained using stems revealed higher antioxidant potential than the fruits extract, which is certainly related with its higher phenolic compounds (phenolic acids and flavonoids) concentration. The fruits extract was the only one showing antitumor potential, revealing selectivity against HCT-15 (colon carcinoma) (GI50~74 μg/mL). This could be related with anthocyanins that were only found in fruits and not in stems. None of the preparations have shown hepatotoxicity against normal primary cells. Overall, this study reports innovative results regarding chemical and bioactive properties of sweet cherry stems, and confirmed the nutritional and antioxidant characteristics of their fruits.
Resumo:
Mushrooms contain a multitude of biomolecules with nutritional and/or biological activity. Among the bioactive molecules, phenolic compounds and tocopherols are the most responsible for their antioxidant activity. In the present work, Boletus edulis, Lentinus edodes and Xerocomus badius, three edible mushroom species originated from Poland, were analyzed for their chemical composition and antioxidant activity. Carbohydrates were the most abundant macronutrients, followed by proteins and ash. Fructose, mannitol and trehalose were the prevalent sugars, but glucose was only found in B. edulis. Polyunsaturated fatty acids predominated over mono and saturated fatty acids. Palmitic, oleic and linoleic acids were abundant in the three samples. α- and β- Tocopherols were quantified in all the samples, but γ-tocopherol was only identified in X. badius. Oxalic and fumaric acids were quantified in the three samples; quinic acid was only present in L. edodes, and malic and citric acids were only found in X. badius. p-Hydroxybenzoic, protocatechuic and cinnamic acids were quantified in all the species, while p-coumaric acid was only found in B. edulis. This species and X. badius revealed the highest antioxidant properties, being B. edulis more effective in radicals scavenging activity and reducing power, and X. badius in lipid peroxidation inhibition, which is related with the highest amounts in phenolic compounds and tocopherols, respectively.
Resumo:
Tese de Doutoramento em Biologia de Plantas
Resumo:
[Excerpt] Antimicrobial peptides (AMPs) are good candidates to treat burn wounds, a major cause of morbidity, impaired life quality and resources consumption in developed countries. We took advantage of a commercially available hydrogel, Carbopol, a vehicle for topical administration that maintains a moist environment within the wound site. We hypothesized that the incorporation of LLKKK18 conjugated to dextrin would improve the healing process in rat burns. Whereas the hydrogel improves healing, LLKKK18 released from the dextrin conjugates further accelerates wound closure, and simultaneously improving the quality of healing. Indeed, the release of LLKKK18 reduces oxidative stress and inflammation (low neutrophil and macrophage infiltration and pro-inflammatory cytokines levels). Importantly, it induced a faster resolution of the inflammatory stage through early M2 macrophage recruitment. In addition, LLKKK18 stimulates angiogenesis (increased VEGF and microvessel development in vivo), potentially contributing to more effective transport of nutrients and cytokines. Moreover, collagen staining evaluated by Masson’s Trichrome was visually much more intense after treatment with LLKKK18, suggesting higher collagen deposition. (...)
Resumo:
Tese de Doutoramento em Engenharia Química e Biológica.
Resumo:
Publicado em "Journal of tissue engineering and regenerative medicine". Vol. 8, suppl. s1 (2014)
Resumo:
Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.
Resumo:
Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were successfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation showing high encapsulation efficiencies (>90 %). FTIR spectroscopy confirmed the encapsulation of bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated compound different interactions occur with the nanohydrogel matrix. The successful encapsulation of bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained. The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH 2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive compounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for curcumin and caffeine compounds and at pH 7 Ficks diffusion is the main mechanism of caffeine release while curcumin was not released through Lf-GMP nanohydrogels.
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
Bioactive compounds are a large group of compounds (antimicrobials, antioxidants, nutrients, etc.), but its use in edible fi lms and coatings for application on fruits and vegetables has been very important because nowadays the consumers demand fruits and vegetables that are fresh, healthy, high quality and easy to prepare. A number of investigations have shown that the use of additives in edible fi lms and coatings improve its functionability and provide compounds for human health. However, it is necessary to continue research that can generate specifi c or tailor-made edible fi lms and coatings for each product with the best characteristics for preservation. In this review we present and analyze the concepts, progress and perspectives in the design and application of edible fi lms and coatings for fruits and vegetables in order to defi ne the challenges and opportunities that this topic of study in the fi eld of science, technology and food engineering.
Resumo:
PhD in Chemical and Biological Engineering
Resumo:
Several novel bioactive components isolated from Chinese medicinal plants will be presented. These include novel maytansinoid tumor, inhibitors, some new ent-kaurane and rosane diterpenoids from Mallotus anomalus Meer et Chun (Euphorbiaceae), as well asnovel insecticide, stemona alkaloids from Stemona parviflora C. H. Wright (Stemonaceae). Both are native plants of Hainan island, Chine. 2D NMR techniques such as mono and hetero-COSY, NOESY, COLOC as well as H-NMR line broadening effect were utilized for structure elucidation. The separation techniques, struture elucidations and bioassay results will be reported.