972 resultados para Bacterial aggregations
Resumo:
Bacteria play a vital role in bringing about Mn(II) oxidation in the natural environment. A study was conducted to identify the potential threat offered by these bacteria in bringing about biomineralisation of manganese dioxide on titanium surfaces exposed to seawater. During the study it was observed that the bacteria such as Pseudomonas and Bacillus formed brown colonies on agar plates amended with Mn2+ indicating their ability to oxidize Mn(II). These colonies showed distinct morphologies when grown on plates containing Mn(II) while they formed normal colonies in the absence of Mn.(II).Hence it is possible that these morphologically distinct structures produced by the bacterial colonies assist these bacteria to perform this function of Mn-oxidation.
Resumo:
Fish farming introduces nutrients, microbes and a wide variety of chemicals such as heavy metals, antifoulants and antibiotics to the surrounding environment. Introduction of antibiotics has been linked with the increased incidence of antibiotic resistant pathogenic bacteria in the farm vicinities. In this thesis molecular methods such as quantitative PCR and DNA sequencing were applied to analyze bacterial communities in sediments from fish farms and pristine locations. Altogether four farms and four pristine sites were sampled in the Baltic Sea. Two farm and two pristine locations were sampled over a surveillance period of four years. Furthermore, a new methodology was developed as a part of the study that permits amplifying single microbial genomes and capturing them according to any genetic traits, including antibiotic resistance genes. The study revealed that several resistance genes for tetracycline were found at the sediment underneath the aquaculture farms. The copy number of these genes remained elevated even at a farm that had not used any antibiotics since year 2000, six years before this study started. Similarly, an increase in the amount of mercury resistance gene merA was observed at the aquaculture sediment. The persistence of the resistance genes in absence of any selection pressure from antibiotics or heavy metals suggests that the genes may be introduced to the sediment by the farming process. This is also supported by the diversity pattern of the merA gene between farm and pristine sediments. The bacterial community-level changes in response to fish farming were very complex and no single phylogenetic groups were found that would be typical to fish farm sediments. However, the community structures had some correlation with the exposure to fish farming. Our studies suggest that the established approaches to deal with antibiotic resistance at the aquaculture, such as antibiotic cycling, are fundamentally flawed because they cannot prevent the introduction of the resistance genes and resistant bacteria to the farm area by the farming process. Further studies are required to study the entire fish farming process to identify the sources of the resistance genes and the resistant bacteria. The results also suggest that in order to prevent major microbiological changes in the surrounding aquatic environment, the farms should not be founded in shallow water where currents do not transport sedimenting matter from the farms. Finally, the technique to amplify and select microbial genomes will potentially have a considerable impact in microbial ecology and genomics.
Resumo:
Background:Bacterial non-coding small RNAs (sRNAs) have attracted considerable attention due to their ubiquitous nature and contribution to numerous cellular processes including survival, adaptation and pathogenesis. Existing computational approaches for identifying bacterial sRNAs demonstrate varying levels of success and there remains considerable room for improvement. Methodology/Principal Findings: Here we have proposed a transcriptional signal-based computational method to identify intergenic sRNA transcriptional units (TUs) in completely sequenced bacterial genomes. Our sRNAscanner tool uses position weight matrices derived from experimentally defined E. coli K-12 MG1655 sRNA promoter and rho-independent terminator signals to identify intergenic sRNA TUs through sliding window based genome scans. Analysis of genomes representative of twelve species suggested that sRNAscanner demonstrated equivalent sensitivity to sRNAPredict2, the best performing bioinformatics tool available presently. However, each algorithm yielded substantial numbers of known and uncharacterized hits that were unique to one or the other tool only. sRNAscanner identified 118 novel putative intergenic sRNA genes in Salmonella enterica Typhimurium LT2, none of which were flagged by sRNAPredict2. Candidate sRNA locations were compared with available deep sequencing libraries derived from Hfq-co-immunoprecipitated RNA purified from a second Typhimurium strain (Sittka et al. (2008) PLoS Genetics 4: e1000163). Sixteen potential novel sRNAs computationally predicted and detected in deep sequencing libraries were selected for experimental validation by Northern analysis using total RNA isolated from bacteria grown under eleven different growth conditions. RNA bands of expected sizes were detected in Northern blots for six of the examined candidates. Furthermore, the 5'-ends of these six Northern-supported sRNA candidates were successfully mapped using 5'-RACE analysis. Conclusions/Significance: We have developed, computationally examined and experimentally validated the sRNAscanner algorithm. Data derived from this study has successfully identified six novel S. Typhimurium sRNA genes. In addition, the computational specificity analysis we have undertaken suggests that similar to 40% of sRNAscanner hits with high cumulative sum of scores represent genuine, undiscovered sRNA genes. Collectively, these data strongly support the utility of sRNAscanner and offer a glimpse of its potential to reveal large numbers of sRNA genes that have to date defied identification. sRNAscanner is available from: http://bicmku.in:8081/sRNAscanner or http://cluster.physics.iisc.ernet.in/sRNAscanner/.
Resumo:
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (ICFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (K-D similar to 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access In recent years, IGFBPs have been implicated in a variety of cancers However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Eschericha coli Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E coli and first structural characterization of a full-length IGFBP (C) 2010 Elsevier Inc. All rights reserved
Improving outcome of childhood bacterial meningitis by simplified treatment : Experience from Angola
Resumo:
Background Acute bacterial meningitis (BM) continues to be an important cause of childhood mortality and morbidity, especially in developing countries. Prognostic scales and the identification of risk factors for adverse outcome both aid in assessing disease severity. New antimicrobial agents or adjunctive treatments - except for oral glycerol - have essentially failed to improve BM prognosis. A retrospective observational analysis found paracetamol beneficial in adult bacteraemic patients, and some experts recommend slow β-lactam infusion. We examined these treatments in a prospective, double-blind, placebo-controlled clinical trial. Patients and methods A retrospective analysis included 555 children treated for BM in 2004 in the infectious disease ward of the Paediatric Hospital of Luanda, Angola. Our prospective study randomised 723 children into four groups, to receive a combination of cefotaxime infusion or boluses every 6 hours for the first 24 hours and oral paracetamol or placebo for 48 hours. The primary endpoints were 1) death or severe neurological sequelae (SeNeSe), and 2) deafness. Results In the retrospective study, the mortality of children with blood transfusion was 23% (30 of 128) vs. without blood transfusion 39% (109 of 282; p=0.004). In the prospective study, 272 (38%) of the children died. Of those 451 surviving, 68 (15%) showed SeNeSe, and 12% (45 of 374) were deaf. Whereas no difference between treatment groups was observable in primary endpoints, the early mortality in the infusion-paracetamol group was lower, with the difference (Fisher s exact test) from the other groups at 24, 48, and 72 hours being significant (p=0.041, 0.0005, and 0.005, respectively). Prognostic factors for adverse outcomes were impaired consciousness, dyspnoea, seizures, delayed presentation, and absence of electricity at home (Simple Luanda Scale, SLS); the Bayesian Luanda Scale (BLS) also included abnormally low or high blood glucose. Conclusions New studies concerning the possible beneficial effect of blood transfusion, and concerning longer treatment with cefotaxime infusion and oral paracetamol, and a study to validate our simple prognostic scales are warranted.
Resumo:
Phlebiopsis gigantea has been for a long time known as a strong competitor against Heterobasidion annosum and intensively applied as a biological control agent on stump surfaces of Picea abies in Fennoscandia. However, the mechanism underlying its antagonistic activity is still unknown. A primary concern is the possible impact of P. gigantea treatment on resident non-target microbial biota of conifer stumps. Additional risk factor is the potential of P. gigantea to acquire a necrotrophic habit through adaptation to living wood tissues. This study focused on the differential screening of several P. gigantea isolates from diverse geographical sources as well as the use of breeding approach to enhance the biocontrol efficacy against H. annosum infection. The results showed a significant positive correlation between growth rate in wood and high biocontrol efficacy. Furthermore, with aid of breeding approach, several progeny strains were obtained that had better growth rate and control efficacy than parental isolates. To address the issue of the potential of P. gigantea to acquire necrotrophic capability, a combination of histochemical, molecular and transcript profiling (454 sequencing) were used to investigate the interactions between these two fungi and ten year old P. sylvestris seedlings. The results revealed that both P. gigantea and H. annosum provoked strong necrotic lesions, but after prolonged incubation, P. gigantea lesions shrank and ceased to expand further. Tree seedlings pre-treated with P. gigantea further restricted H. annosum-induced necrosis and had elevated transcript levels of genes important for lignification, cell death regulation and jasmonic acid signalling. These suggest that induced localized resistance is a contributory factor for the biocontrol efficacy of P.gigantea, and it has a comparatively limited necrotrophic capability than H. annosum. Finally, to investigate the potential impact of P. gigantea on the stump bacterial biota, 16S rDNA isolated from tissue samples from stumps of P. abies after 1-, 6- and 13-year post treatment was sequenced using bar-coded 454 Titanium pyrosequencing. Proteobacteria were found to be the most abundant at the initial stages of stump decay but were selectively replaced by Acidobacteria at advanced stages of the decay. Moreover, P. gigantea treatment significantly decreased the bacterial richness at initial decay stage in the stumps. Over time, the bacterial community in the stumps gradually recovered and the negative effects of P. gigantea was attenuated.
Resumo:
Coagulase-negative staphylococci (CNS) are the most common bacteria isolated in bovine subclinical mastitis in many countries, and also a frequent cause of clinical mastitis. The most common species isolated are Staphylococcus (S) chromogenes, S. simulans, S. epidermidis, and S. xylosus. One half of the intramammary infections (IMI) caused by CNS persist in the udder. The pathogenesis of IMI caused by CNS is poorly understood. This dissertation focuses on host response in experimental intramammary infection induced by S. chromogenes, S. epidermidis and S. simulans. Model for a mild experimental CNS infection was developed with S. chromogenes (study I). All cows were infected and most developed subclinical mastitis. In study II the innate immune response to S. epidermidis and S. simulans IMI was compared in eight cows using a crossover design. A larger dose of bacteria was used to induce clinical mastitis. All cows became infected and showed mild to moderate clinical signs of mastitis. S. simulans caused a slightly stronger innate immune response than S. epidermidis, with significantly higher concentrations of the interleukins IL-1beta and IL-8 in the milk. The spontaneous elimination rate of the 16 IMIs was 31%, with no difference between species. No significant differences were recorded between infections eliminated spontaneously or remaining persistent, although the response was stronger in IMIs eliminated spontaneously, except the concentration of TNF-α, which remained elevated in persistent infections. Lactoferrin (Lf) is a component of the humoral defence of the host and is present at low concentrations in the milk. The concentration of Lf in milk is high during the dry period, in colostrum, and in mastitic milk. The effect of an inherent, high concentration of Lf in the milk on experimental IMI induced with S. chromogenes was studied in transgenic cows that expressed recombinant human Lf in their milk. Human Lf did not prevent S. chromogenes IMI, but the host response was milder in transgenic cows than in normal cows, and the former eliminated infection faster. Biofilm production has been suggested to promote persistence of IMI. Phenotypic biofilm formation and slime producing ability of CNS isolates from bovine mastitis was investigated in vitro. One-third of mastitis isolates produced biofilm. Slime production was less frequent for isolates of the most common mastitis causing species S. chromogenes and S. simulans compared with S. epidermidis. No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was associated with persistent infections, but only 8% of isolates produced slime.
Resumo:
Motivation: The number of bacterial genomes being sequenced is increasing very rapidly and hence, it is crucial to have procedures for rapid and reliable annotation of their functional elements such as promoter regions, which control the expression of each gene or each transcription unit of the genome. The present work addresses this requirement and presents a generic method applicable across organisms. Results: Relative stability of the DNA double helical sequences has been used to discriminate promoter regions from non-promoter regions. Based on the difference in stability between neighboring regions, an algorithm has been implemented to predict promoter regions on a large scale over 913 microbial genome sequences. The average free energy values for the promoter regions as well as their downstream regions are found to differ, depending on their GC content. Threshold values to identify promoter regions have been derived using sequences flanking a subset of translation start sites from all microbial genomes and then used to predict promoters over the complete genome sequences. An average recall value of 72% (which indicates the percentage of protein and RNA coding genes with predicted promoter regions assigned to them) and precision of 56% is achieved over the 913 microbial genome dataset.
Resumo:
Nitrogen-fixing bacterial isolate from the intercellular spaces of tomato root cortical cells was studied for the location of nif genes on the chromosomal or plasmid DNA. The bacterial isolate showed two plasmids of approximate molecular sizes of 220 and 120 kb. Klebsiella pneumoniae nif HDK probe hybridized with the chromosomal DNA and not with the plasmid DNA thereby showing that nif genes are localised on the chromosomal DNA.
Resumo:
The role of growth conditions and adhesion of Thiobacillus ferrooxidans on the leaching of chalcopyrite was investigated. Thiobacillus ferrooxidans grown on sulfur, thiosulfate and ferrous ion substrates was used in this comparative study. Growth on sulfur, a solid substrate, requires bacterial adhesion unlike that required in the presence of soluble thiosulfate and ferrous ion in a mineral-salts medium. Solid substrate-grown cells showed higher rates of leaching than those grown in liquid media. An initial lag period noticed during leaching by solution-grown cells was absent when solid substrate-grown cells were used. Such a behavior is attributed to the presence of an inducible proteinaceous cell-surface appendage on the sulfur-grown cells. This appendage aids in bacterial adhesion onto the mineral surfaces. Such an appendage is absent in solution-grown cells, as substantiated by electrophoretic measurements. The importance of bacterial adhesion and the direct mechanism in leaching by Thiobacillus ferrooxidans are demonstrated.
Resumo:
The presence of residual chlorine and organic matter govern the bacterial regrowth within a water distribution system. The bacterial growth model is essential to predict the spatial and temporal variation of all these substances throughout the system. The parameters governing the bacterial growth and biodegradable dissolved organic carbon (BDOC) utilization are difficult to determine by experimentation. In the present study, the estimation of these parameters is addressed by using simulation-optimization procedure. The optimal solution by genetic algorithm (GA) has indicated that the proper combination of parameter values are significant rather than correct individual values. The applicability of the model is illustrated using synthetic data generated by introducing noise in to the error-free measurements. The GA was found to be a potential tool in estimating the parameters controlling the bacterial growth and BDOC utilization. Further, the GA was also used for evaluating the sensitivity issues relating parameter values and objective function. It was observed that mu and k(cl) are more significant and dominating compared to the other parameters. But the magnitude of the parameters is also an important issue in deciding the dominance of a particular parameter. GA is found to be a useful tool in autocalibration of bacterial growth model and a sensitivity study of parameters.
Resumo:
Shock waves are one of the most competent mechanisms of energy dissipation observed in nature. We have developed a novel device to generate controlled micro-shock waves using an explosive-coated polymer tube. In this study, we harnessed these controlled micro-shock waves to develop a unique bacterial transformation method. The conditions were optimized for the maximum transformation efficiency in Escherichia coli. The maximum transformation efficiency was obtained when we used a 30 cm length polymer tube, 100 mu m thick metal foil, 200 mM CaCl(2), 1 ng/mu l plasmid DNA concentration, and 1 x 10(9) cell density. The highest transformation efficiency achieved (1 x 10(-5) transformants/cell) was at least 10 times greater than the previously reported ultrasound-mediated transformation (1 x 10(-6) transformants/cell). This method was also successfully employed for the efficient and reproducible transformation of Pseudomonas aeruginosa and Salmonella typhimurium. This novel method of transformation was shown to be as efficient as electroporation with the added advantage of better recovery of cells, reduced cost (40 times cheaper than a commercial electroporator), and growth phase independent transformation. (C) 2011 Elsevier Inc. All rights reserved.