996 resultados para BONE-TUMORS
Resumo:
Oral Diseases (2012) 18, 548557 Objective: Keratocystic odontogenic tumors (KOTs) can be treated with Carnoys solution, although this treatment modality is not free from complications. It is important to verify the incidence of complications after the use of Carnoys solution and compare these with the literature. Materials and methods: This study verified the effects of a complementary treatment for KOTs and assessed the incidence of such complications as recurrence, infection, sequestrum formation, mandibular fracture, dehiscence, and neuropathy. Results: Twenty-two KOTs treated with Carnoys solution combined with peripheral ostectomy were included, and the follow-up period varied from 12 to 78 months with a mean of 42.9 months. Complications included recurrence (4.5%), dehiscence (22.7%), infection (4.5%), and paresthesia (18.2%). No difference was found among lesions associated (9.1%) or not (0%) with nevoid basal cell carcinoma syndrome (P > 0.05). Dehiscence was influenced by marsupialization (P < 0.05), and paresthesia was observed exclusively in cases of mandibular canal fenestration (P < 0.01). Conclusions: Complementary treatment with Carnoys solution and peripheral ostectomy appear to provide efficient treatment for KOTs. Complications originating from the use of the solution are less frequent and less serious than complications associated with cryotherapy. Neuropathy seems to be related to direct contact between the solution and the epineurium.
Resumo:
Background: Giant cell tumors of bone (GCTs) are common in the long bones, but rare in the craniofacial region, with only 1% of cases occurring in the latter. Clinical, radiological, and anatomical diagnosis of this locally aggressive disease, which occurs in response to trauma or neoplastic transformation, poses a major challenge in clinical practice. Methods: The present study describes a series of 4 cases and highlights the main features of the differential diagnosis and treatment of these lesions: GCT, giant cell reparative granuloma (GCRG), and the brown tumor of hyperparathyroidism. Results: GCT presents as a benign neoplasm, most typically affecting the knees, and rarely in the temporal and sphenoid bones. It is radiologically indistinguishable from GCRG due to its lytic, poorly defined appearance. The distinction can only be made microscopically, as the presence of multinucleated giant cells scattered throughout the stroma and the absence of a history of trauma favor a diagnosis of GCT. The brown tumor of hyperparathyroidism occurs with rapid, localized osteoclast activity secondary to the effects of increased parathyroid hormone (PTH) levels; parathyroid examination is indispensable. Conclusion: The diagnosis and treatment of these lesions poses a major challenge due to their similar clinical presentation and radiological appearance. Accurate diagnosis is essential for definition of appropriate management, as complete resection is the goal in GCT and GCRG to avoid recurrence, whereas the brown tumor often yields to treatment of the underlying hyperparathyroidism.
Resumo:
Abstract Objective To evaluate the functionality of the auditory system in patients who underwent radiotherapy and chemotherapy treatment with cisplatin to treat head and neck tumors. Study Design Case series with planned data collection. Setting From May 2007 to May 2008 by the Department of Otorhinolaryngology and the Department of Oncology/Radiotherapy at Faculdade de Medicina de Marília. Subjects and Methods Audiological evaluation (Pure Tone Audiometry (air and bone conduction), Speech Audiometry, Tympanometry, Acoustic Reflex testing and Distortion Product Otoacoustic Emissions) was performed in 17 patients diagnosed with head and neck neoplasia and treated with chemotherapy, using cisplatin, and radiotherapy. Results 12 left ears (70.5%) and 11 right ears (64.7%) presented bilateral decreased hearing soon after the treatment for the frequency 1 kHz (mild auditory damage) and for the frequency 8 kHz (more significant auditory damage). Conclusion Patients with head and neck cancer submitted to the conventional radiotherapy treatment, combined with the chemotherapy with cisplatin, presented a high incidence of decreased hearing by the end of treatment. Strong evidence was observed linking auditory alteration to the amount of radiotherapy treatment.
Resumo:
Bone metastases are responsible for different clinical complications defined as skeletal-related events (SREs) such as pathologic fractures, spinal cord compression, hypercalcaemia, bone marrow infiltration and severe bone pain requiring palliative radiotherapy. The general aim of these three years research period was to improve the management of patients with bone metastases through two different approaches of translational research. Firstly in vitro preclinical tests were conducted on breast cancer cells and on indirect co-colture of cancer cells and osteoclasts to evaluate bone targeted therapy singly and in combination with conventional chemotherapy. The study suggests that zoledronic acid has an antitumor activity in breast cancer cell lines. Its mechanism of action involves the decrease of RAS and RHO, as in osteoclasts. Repeated treatment enhances antitumor activity compared to non-repeated treatment. Furthermore the combination Zoledronic Acid + Cisplatin induced a high antitumoral activity in the two triple-negative lines MDA-MB-231 and BRC-230. The p21, pMAPK and m-TOR pathways were regulated by this combined treatment, particularly at lower Cisplatin doses. A co-colture system to test the activity of bone-targeted molecules on monocytes-breast conditioned by breast cancer cells was also developed. Another important criticism of the treatment of breast cancer patients, is the selection of patients who will benefit of bone targeted therapy in the adjuvant setting. A retrospective case-control study on breast cancer patients to find new predictive markers of bone metastases in the primary tumors was performed. Eight markers were evaluated and TFF1 and CXCR4 were found to discriminate between patients with relapse to bone respect to patients with no evidence of disease. In particular TFF1 was the most accurate marker reaching a sensitivity of 63% and a specificity of 79%. This marker could be a useful tool for clinicians to select patients who could benefit for bone targeted therapy in adjuvant setting.
Resumo:
Peptide receptor radionuclide therapy (PRRT) is an efficient treatment for gastroenteropancreatic neuroendocrine tumors (GEP NETs), with outstanding overall response rates and survival. However, little is known about the particular efficacy regarding bone metastasis (BM).
Resumo:
Many surgeons treat giant cell tumor of bone (GCT) with intralesional curettage. Wide resection is reserved for extensive bone destruction where joint preservation is impossible or when expendable sites (eg, fibular head) are affected. Adjuvants such as polymethylmethacrylate and phenol have been recommended to reduce the risk of local recurrence after intralesional surgery. However, the best treatment of these tumors and risk factors for recurrence remain controversial.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate, in relation to intraoperative estimated blood loss (EBL), the effectiveness of preoperative transcatheter arterial embolization of hypervascular osseous metastatic lesions before orthopedic resection and stabilization. MATERIALS AND METHODS: Between June 1987 and November 2007, 22 patients underwent transcatheter arterial embolization of tumors of the long bone, hip, or vertebrae before resection and stabilization. Osseous metastatic lesions from renal cell carcinoma, malignant melanoma, leiomyosarcoma, and prostate cancer were embolized. All patients were treated with a coaxial catheter technique with polyvinyl alcohol (PVA) particles alone or a combination of PVA particles and coils. After embolization, each tumor was angiographically graded according to devascularization (grades 1-3) based on tumor blush after contrast injection into the main tumor-feeding arteries. RESULTS: In patients with complete devascularization (grade 1), mean EBL was calculated to be 1,119 mL, whereas in patients with partial embolization (grades 2 and 3) EBL was 1,788 mL and 2,500 mL. With respect to intraoperative EBL, no significant difference between devascularization grades was found (p > 0.05). Moderate correlation (r = 0.51, p = 0.019) was observed between intraoperative EBL and tumor size before embolization. Only low correlation (r = 0.44, p = 0.046) was found between intraoperative EBL and operating time. Major complications included transient palsy of the sciatic nerve and gluteal abscess in one patient. CONCLUSION: The results of this study support the concept that there is no statistically significant difference among amounts of intraoperative EBL with varying degrees of embolization.
Resumo:
We have previously shown that vasculogenesis, the process by which bone marrow-derived cells are recruited to the tumor and organized to form a blood vessel network de novo, is essential for the growth of Ewing’s sarcoma. We further demonstrated that these bone marrow cells differentiate into pericytes/vascular smooth muscle cells(vSMC) and contribute to the formation of the functional vascular network. The molecular mechanisms that control bone marrow cell differentiation into pericytes/vSMC in Ewing’s sarcoma are poorly understood. Here, we demonstrate that the Notch ligand Delta like ligand 4 (DLL4) plays a critical role in this process. DLL4 is essential for the formation of mature blood vessels during development and in several tumor models. Inhibition of DLL4 causes increased vascular sprouting, decreased pericyte coverage, and decreased vessel functionality. We demonstrate for the first time that DLL4 is expressed by bone marrow-derived pericytes/vascular smooth muscle cells in two Ewing’s sarcoma xenograft models and by perivascular cells in 12 out of 14 patient samples. Using dominant negative mastermind to inhibit Notch, we demonstrate that Notch signaling is essential for bone marrow cell participation in vasculogenesis. Further, inhibition of DLL4 using either shRNA or the monoclonal DLL4 neutralizing antibody YW152F led to dramatic changes in blood vessel morphology and function. Vessels in tumors where DLL4 was inhibited were smaller, lacked lumens, had significantly reduced numbers of bone marrow-derived pericyte/vascular smooth muscle cells, and were less functional. Importantly, growth of TC71 and A4573 tumors was significantly inhibited by treatment with YW152F. Additionally, we provide in vitro evidence that DLL4-Notch signaling is involved in bone marrow-derived pericyte/vascular smooth muscle cell formation outside of the Ewing’s sarcoma environment. Pericyte/vascular smooth muscle cell marker expression by whole bone marrow cells cultured with mouse embryonic stromal cells was reduced when DLL4 was inhibited by YW152F. For the first time, our findings demonstrate a role for DLL4 in bone marrow-derived pericyte/vascular smooth muscle differentiation as well as a critical role for DLL4 in Ewing’s sarcoma tumor growth.
Resumo:
We previously demonstrated that bone marrow cells (BMCs) migrate to TC71 and A4573 Ewing’s sarcoma tumors where they can differentiate into endothelial cells (ECs) and pericytes and, participate in the tumor vascular development. This process of neo-vascularization, known as vasculogenesis, is essential for Ewing’s sarcoma growth with the soluble vascular endothelial growth factor, VEGF165, being the chemotactic factor for BMC migration to the tumor site. Inhibiting VEGF165 in TC71 tumors (TC/siVEGF7-1) inhibited BMC infiltration to the tumor site and tumor growth. Introducing the stromal-derived growth factor (SDF-1α) into the TC/siVEGF7-1 tumors partially restored vasculogenesis with infiltration of BMCs to a perivascular area where they differentiated into pericytes and rescued tumor growth. RNA collected from the SDF-1α-treated TC/siVEGF7-1 tumors also revealed an increase in platelet-derived growth factor B (PDGF-B) mRNA levels. PDGF-B expression is elevated in several cancer types and the role of PDGF-B and its receptor, PDGFR-β, has been extensively described in the process of pericyte maturation. However, the mechanisms by which PDGF-B expression is up-regulated during vascular remodeling and the process by which BMCs differentiate into pericytes during tumor vasculogenesis remain areas of investigation. In this study, we are the first to demonstrate that SDF-1α regulates the expression of PDGF-B via a transcriptional mechanism which involves binding of the ELK-1 transcription factor to the pdgf-b promoter. We are also first to validate the critical role of the SDF-1α/PDGF-B pathway in the differentiation of BMCs into pericytes both in vitro and in vivo. SDF-1α up-regulated PDGF-B expression in both TC/siVEGF7-1 and HEK293 cells. In contrast, down-regulating SDF-1α, down-regulated PDGF-B. We cloned the 2 kb pdgf-b promoter fragment into the pGL3 reporter vector and showed that SDF-1α induced pdgf-b promoter activity. We used chromatin immunoprecipitation (ChIP) and demonstrated that the ELK-1 transcription factor bound to the pdgf-b promoter in response to SDF-1α stimulation in both TC/siVEGF7-1 and HEK293 cells. We collected BMCs from the hind femurs of mice and cultured the cells in medium containing SDF-1α and PDGF-B and found that PDGFR-β+ BMCs differentiated into NG2 and desmin positive pericytes in vitro. In contrast, inhibiting SDF-1α and PDGF-B abolished this differentiation process. In vivo, we injected TC71 or A4573 tumor-bearing mice with the SDF-1α antagonist, AMD3100 and found that inhibiting SDF-1α signaling in the tumor microenvironment decreased the tumor microvessel density, decreased the tumor blood vessel perfusion and, increased tumor cell apoptosis. We then analyzed the effect of AMD3100 on vasculogenesis of Ewing’s sarcoma and found that BMCs migrated to the tumor site where they differentiated into ECs but, they did not form thick perivascular layers of NG2 and desmin positive pericytes. Finally, we stained the AMD3100-treated tumors for PDGF-B and showed that inhibiting SDF-1α signaling also inhibited PDGF-B expression. All together, these findings demonstrated that the SDF-1α/PDGF-B pathway plays a critical role in the formation of BM-derived pericytes during vasculogenesis of Ewing’s sarcoma tumors.
Resumo:
BACKGROUND The number of cells positive for the α-6 and α-2 integrin subunits and the c-Met receptor in primary tumors and bone biopsies from prostate cancer patients has been correlated with metastasis and disease progression. The objective of this study was to quantify disseminated tumour cells present in bone marrow in prostate cancer patients using specific markers and determine their correlation with metastasis and survival. METHODS Patients were included at different stage of prostate cancer disease, from localised to metastatic castration-resistant prostate cancer. Healthy men were used as a control group. Bone marrow samples were collected and nucleated cells separated. These were stained for CD45, α-2, α-6 integrin subunits and c-Met and samples were processed for analysis and quantification of CD45-/α2+/α6+/c-met + cells using flow cytometry. Clinical and pathological parameters were assessed and survival measured. Statistical analyses were made of associations between disease specific parameters, bone marrow flow cytometry data, prostate-specific antigen (PSA) progression free survival and bone metastases progression free survival. RESULTS For all markers, the presence of more than 0.1% positive cells in bone marrow aspirates was significantly associated with the risk of biochemical progression, the risk of developing metastasis and death from prostate cancer. CONCLUSIONS Quantification of cells carrying putative stem cell markers in bone marrow is a potential indicator of disease progression. Functional studies on isolated cells are needed to show more specifically their property for metastatic spread in prostate cancer.
Resumo:
Allogeneic bone marrow transplantation (BMT) is known to induce a beneficial anti-tumor immune response called graft-versus-tumor (GVT) activity. However, GVT activity is closely associated with graft-versus-host disease (GVHD), a potentially fatal immune response against antigens on normal recipient tissues. The T-cell populations mediating these two processes are often overlapping, but studies have shown that some donor T-cells can be tumor-specific. Therefore, the goal of this study was to develop strategies for preferentially activating donor T-cells capable of mediating GVT activity but not GVHD. The three hypotheses tested were: (1) Pre-transplant immunization of BMT donors with a recipient-derived tumor cell vaccine will induce a relative increase in GVT activity as compared to GVHD. (2) Post-transplant tumor immunization of BMT recipients will enhance GVT activity without exacerbating GVHD. (3) Pre-transplant immunization of BMT donors against a tumor-specific antigen will enhance GVT activity without exacerbating GVHD. ^ To test the first two hypotheses, C3H.SW mice (MHC-matched donors) were immunized with a C57BL/6 (recipient)-derived tumor cell vaccine (leukemia or fibrosarcoma) prior to BMT, or recipients were immunized starting one month after BMT. Both donor and recipient immunization led to a significant increase in GVT activity (enhanced recipient survival and decreased tumor growth). However, donor immunization also increased fatal GVHD, which was at least partially due to activation of alloreactive T-cells recognizing the immunodominant minor histocompatibility antigen B6dom1. GVT immunity following recipient immunization was not associated with an exacerbation of GVHD or a response to B6dom1. ^ To test the third hypothesis, influenza nucleoprotein (NP) was used as a model tumor antigen. C3H.SW donors were immunized against NP prior to BMT, which led to a significant increase in GVT activity. Although recipients were not completely protected against growth of antigen loss variant tumors, there was no increase in GVHD. ^ In conclusion, (1) immunization of allogeneic BMT donors with a recipient-derived tumor cell vaccine substantially increases GVT activity but also exacerbates GVHD, (2) post-transplant tumor immunization of allogeneic BMT recipients significantly increases GVT activity and survival without exacerbating GVHD, and (3) immunization of allogeneic BMT donors against a tumor-specific antigen significantly enhances GVT activity without exacerbating GVHD. ^
Resumo:
Osteosarcoma, a malignant bone tumor, rapidly destroys the cortical bone. We demonstrated that mouse K7M2 osteosarcoma cells were deficient in osterix (osx), a zinc finger-containing transcription factor required for osteoblasts differentiation and bone formation. These cells formed lytic tumors when injected into the tibia. The destruction of bone is mediated by osteoclasts in osteosarcoma. The less expression of osterix with osteolytic phenotype was also observed in more tumor cell lines. Replacement of osterix in K7M2 cells suppressed lytic bone destruction, inhibited tumor growth in vitro and in vivo, and suppressed lung metastasis in vivo and the migration of K7M2 to lung conditioned medium in vitro. By contrast, inhibiting osterix by vector-based small interfering RNA (siRNA) in two cell lines (Dunn and DLM8) that expressed high levels of osterix converted osteoblastic phenotype to lytic. Recognizing and binding of Receptor Activator of NF-κB (RANK) on osteoclast precursors by its ligand RANKL is the key osteoclastogenic event. Increased RANKL results in more osteoclast activity. We investigated whether K7M2-mediated bone destruction was secondary to an effect on RANKL. The conditioned medium from K7M2 could upregulate RANKL in normal osteoblast MC3T3, which might lead to more osteoclast formation. By contrast, the conditioned medium from K7M2 cells transfected with osx-expressing plasmid did not upregulate RANKL. Furthermore, Interleukin-1alpha (IL-1α) was significantly suppressed following osx transfection. IL-1α increased RANKL expression in MC3T3 cells, suggesting that osx may control RANKL via a mechanism involving IL-1α. Using a luciferase reporter assay, we demonstrated that osx downregulated IL-1α through a transcription-mediated mechanism. Following suppression of osterix in Dunn and DLM8 cells led to enhanced IL-1α promoter activity and protein production. Site-directed mutagenesis and Chromatin immunoprecipitation (ChIP) indicated that osterix downregulated IL-1α through a Sp1-binding site on the IL-1α promoter. These data suggest that osterix is involved in the lytic phenotype of osteosarcoma and that this is mediated via transcriptional repression of IL-1α. ^
Resumo:
The til-1 locus was identified as a common retroviral integration site in virus-accelerated lymphomas of CD2-myc transgenic mice. We now show that viral insertions at til-1 lead to transcriptional activation of PEBP2αA (CBFA1), a transcription factor related to the Drosophila segmentation gene product, Runt. Insertions are upstream and in the opposite orientation to the gene and appear to activate a variant promoter that is normally silent in T cells. Activity of this promoter was detected in rodent osteogenic sarcoma cells and primary osteoblasts, implicating bone as the normal site of promoter activity. The isoforms encoded by the activated gene all encompass the conserved runt DNA-binding domain and share a novel N terminus different from the previously reported PEBP2αA products. Minor products include isoforms with internal deletions due to exon skipping and a novel C-terminal domain unrelated to known runt domain factors. The major isoform expressed from the activated til-1 locus (G1) was found to account for virtually all of the core binding factor activity in nuclear extracts from its corresponding lymphoma cell line. Another member of this gene family, AML1(CBFA2), is well known for its involvement in human hemopoietic tumors. These results provide evidence of a direct oncogenic role for PEBP2αA and indicate that the Myc and Runt family genes can cooperate in oncogenesis.
Resumo:
Neuropeptides are implicated in many tumors, breast cancer (BC) included. Preprotachykinin-I (PPT-I) encodes multiple neuropeptides with pleiotropic functions such as neurotransmission, immune/hematopoietic modulation, angiogenesis, and mitogenesis. PPT-I is constitutively expressed in some tumors. In this study, we investigated a role for PPT-I and its receptors, neurokinin-1 (NK-1) and NK-2, in BC by using quantitative reverse transcription–PCR, ELISA, and in situ hybridization. Compared with normal mammary epithelial cells (n = 2) and benign breast biopsies (n = 21), BC cell lines (n = 7) and malignant breast biopsies (n = 25) showed increased expression of PPT-I and NK-1. NK-2 levels were high in normal and malignant cells. Specific NK-1 and NK-2 antagonists inhibited BC cell proliferation, suggesting autocrine and/or intercrine stimulation of BC cells by PPT-I peptides. NK-2 showed no effect on the proliferation of normal cells but mediated the proliferation of BC cells. Cytosolic extracts from malignant BC cells enhanced PPT-I translation whereas extracts from normal mammary epithelial cells caused no change. These enhancing effects may be protein-specific because a similar increase was observed for IL-6 translation and no effect was observed for IL-1α and stem cell factor. The data suggest that PPT-I peptides and their receptors may be important in BC development. Considering that PPT-I peptides are hematopoietic modulators, these results could be extended to understand early integration of BC cells in the bone marrow, a preferred site of metastasis. Molecular signaling transduced by PPT-I peptides and the mechanism that enhances translation of PPT-I mRNA could lead to innovative strategies for BC treatments and metastasis.
Resumo:
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.