906 resultados para Autoregressive-Moving Average model
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
There is a demonstrable association between exposure to air pollutants and deaths due to cardiovascular diseases. The objective of this study was to estimate the effects of exposure to sulfur dioxide on mortality due to circulatory diseases in individuals 50 years of age or older residing in São José dos Campos, SP. This was a time-series ecological study for the years 2003 to 2007 using information on deaths due to circulatory disease obtained from Datasus reports. Data on daily levels of pollutants, particulate matter, sulfur dioxide (SO2), ozone, temperature, and humidity were obtained from the São Paulo State Environmental Agency. Moving average models for 2 to 7 days were calculated by Poisson regression using the R software. Exposure to SO2 was analyzed using a unipollutant, bipollutant or multipollutant model adjusted for mean temperature and humidity. The relative risks with 95%CI were obtained and the percent decrease in risk was calculated. There were 1928 deaths with a daily mean (± SD) of 1.05 ± 1.03 (range: 0-6). Exposure to SO2 was significantly associated with mortality due to circulatory disease: RR = 1.04 (95%CI = 1.01 to 1.06) in the 7-day moving average, after adjusting for ozone. There was an 8.5% decrease in risk in the multipollutant model, proportional to a decrease of SO2 concentrations. The results of this study suggest that residents of medium-sized Brazilian cities with characteristics similar to those of São José dos Campos probably have health problems due to exposure to air pollutants.
Resumo:
This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.
Resumo:
El presente trabajo desarrollado en el Hospital Méderi es una asesoría sobre modelos de pronósticos la cual consiste en analizar una base de datos de mercancía almacenada en la bodega general, suministrada por la entidad, mediante cuatro tipos de pronósticos diferentes, Promedio Móvil Ponderado, Promedio Móvil simple, Regresión Lineal y Suavizamiento Exponencial. Teniendo en cuenta el resultado arrojado por cada uno de los pronósticos, se hace una recomendación al hospital diciendo cual pronóstico debería utilizar para predecir la demanda con mayor precisión.
Resumo:
Las estrategias de inversión pairs trading se basan en desviaciones del precio entre pares de acciones correlacionadas y han sido ampliamente implementadas por fondos de inversión tomando posiciones largas y cortas en las acciones seleccionadas cuando surgen divergencias y obteniendo utilidad cerrando la posición al converger. Se describe un modelo de reversión a la media para analizar la dinámica que sigue el diferencial del precio entre acciones ordinarias y preferenciales de una misma empresa en el mismo mercado. La media de convergencia en el largo plazo es obtenida con un filtro de media móvil, posteriormente, los parámetros del modelo de reversión a la media se estiman mediante un filtro de Kalman bajo una formulación de estado espacio sobre las series históricas. Se realiza un backtesting a la estrategia de pairs trading algorítmico sobre el modelo propuesto indicando potenciales utilidades en mercados financieros que se observan por fuera del equilibrio. Aplicaciones de los resultados podrían mostrar oportunidades para mejorar el rendimiento de portafolios, corregir errores de valoración y sobrellevar mejor periodos de bajos retornos.
Resumo:
El presente trabajo se enfoca en el análisis de las acciones de Ecopetrol, empresa representativa del mercado de Extracción de Petróleo y Gas natural en Colombia (SP&G), durante el periodo, del 22 de mayo de 2012 al 30 de agosto de 2013. Durante este espacio de tiempo la acción sufrió una serie de variaciones en su precio las cuales se relacionaban a la nueva emisión de acciones que realizo la Compañía. Debido a este cambio en el comportamiento del activo se generaron una serie de interrogantes sobre, (i) la reacción del mercado ante diferentes sucesos ocurridos dentro de las firmas y en su entorno (ii) la capacidad de los modelos financieros de predecir y entender las posibles reacciones observadas de los activos (entendidos como deuda). Durante el desarrollo del presente trabajo se estudiará la pertinencia del mismo, en línea con los objetivos y desarrollos de la Escuela de Administración de la Universidad del Rosario. Puntualmente en temas de Perdurabilidad direccionados a la línea de Gerencia. Donde el entendimiento de la deuda como parte del funcionamiento actual y como variable determinante para el comportamiento futuro de las organizaciones tiene especial importancia. Una vez se clarifica la relación entre el presente trabajo y la Universidad, se desarrollan diferentes conceptos y teorías financieras que han permitido conocer y estudiar de manera más específica el mercado, con el objetivo de reducir los riesgos de las inversiones realizadas. Éste análisis se desarrolla en dos partes: (i) modelos de tiempo discreto y (ii) modelos de tiempo continúo. Una vez se tiene mayor claridad sobre los modelos estudiados hasta el momento se realiza el respectivo análisis de los datos mediante modelos de caos y análisis recurrente los cuales nos permiten entender que las acciones se comportan de manera caótica pero que establecen ciertas relaciones entre los precios actuales y los históricos, desarrollando comportamientos definidos entre los precios, las cantidades, el entorno macroeconómico y la organización. De otra parte, se realiza una descripción del mercado de petróleo en Colombia y se estudia a Ecopetrol como empresa y eje principal del mercado descrito en el país. La compañía Ecopetrol es representativa debido a que es uno de los mayores aportantes fiscales del país, pues sus ingresos se desprenden de bienes que se encuentran en el subsuelo por lo que la renta petrolera incluye impuestos a la producción transformación y consumo (Ecopetrol, 2003). Por último, se presentan los resultados del trabajo, así como el análisis que da lugar para presentar ciertas recomendaciones a partir de lo observado.
Resumo:
Several studies have highlighted the importance of the cooling period in oil absorption in deep-fat fried products. Specifically, it has been established that the largest proportion of oil which ends up into the food, is sucked into the porous crust region after the fried product is removed from the oil bath, stressing the importance of this time interval. The main objective of this paper was to develop a predictive mechanistic model that can be used to understand the principles behind post-frying cooling oil absorption kinetics, which can also help identifying the key parameters that affect the final oil intake by the fried product. The model was developed for two different geometries, an infinite slab and an infinite cylinder, and was divided into two main sub-models, one describing the immersion frying period itself and the other describing the post-frying cooling period. The immersion frying period was described by a transient moving-front model that considered the movement of the crust/core interface, whereas post-frying cooling oil absorption was considered to be a pressure driven flow mediated by capillary forces. A key element in the model was the hypothesis that oil suction would only begin once a positive pressure driving force had developed. The mechanistic model was based on measurable physical and thermal properties, and process parameters with no need of empirical data fitting, and can be used to study oil absorption in any deep-fat fried product that satisfies the assumptions made.
Resumo:
This paper introduces a new neurofuzzy model construction and parameter estimation algorithm from observed finite data sets, based on a Takagi and Sugeno (T-S) inference mechanism and a new extended Gram-Schmidt orthogonal decomposition algorithm, for the modeling of a priori unknown dynamical systems in the form of a set of fuzzy rules. The first contribution of the paper is the introduction of a one to one mapping between a fuzzy rule-base and a model matrix feature subspace using the T-S inference mechanism. This link enables the numerical properties associated with a rule-based matrix subspace, the relationships amongst these matrix subspaces, and the correlation between the output vector and a rule-base matrix subspace, to be investigated and extracted as rule-based knowledge to enhance model transparency. The matrix subspace spanned by a fuzzy rule is initially derived as the input regression matrix multiplied by a weighting matrix that consists of the corresponding fuzzy membership functions over the training data set. Model transparency is explored by the derivation of an equivalence between an A-optimality experimental design criterion of the weighting matrix and the average model output sensitivity to the fuzzy rule, so that rule-bases can be effectively measured by their identifiability via the A-optimality experimental design criterion. The A-optimality experimental design criterion of the weighting matrices of fuzzy rules is used to construct an initial model rule-base. An extended Gram-Schmidt algorithm is then developed to estimate the parameter vector for each rule. This new algorithm decomposes the model rule-bases via an orthogonal subspace decomposition approach, so as to enhance model transparency with the capability of interpreting the derived rule-base energy level. This new approach is computationally simpler than the conventional Gram-Schmidt algorithm for resolving high dimensional regression problems, whereby it is computationally desirable to decompose complex models into a few submodels rather than a single model with large number of input variables and the associated curse of dimensionality problem. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
Resumo:
This paper presents an approach for automatic classification of pulsed Terahertz (THz), or T-ray, signals highlighting their potential in biomedical, pharmaceutical and security applications. T-ray classification systems supply a wealth of information about test samples and make possible the discrimination of heterogeneous layers within an object. In this paper, a novel technique involving the use of Auto Regressive (AR) and Auto Regressive Moving Average (ARMA) models on the wavelet transforms of measured T-ray pulse data is presented. Two example applications are examined - the classi. cation of normal human bone (NHB) osteoblasts against human osteosarcoma (HOS) cells and the identification of six different powder samples. A variety of model types and orders are used to generate descriptive features for subsequent classification. Wavelet-based de-noising with soft threshold shrinkage is applied to the measured T-ray signals prior to modeling. For classi. cation, a simple Mahalanobis distance classi. er is used. After feature extraction, classi. cation accuracy for cancerous and normal cell types is 93%, whereas for powders, it is 98%.
Resumo:
Higher order cumulant analysis is applied to the blind equalization of linear time-invariant (LTI) nonminimum-phase channels. The channel model is moving-average based. To identify the moving average parameters of channels, a higher-order cumulant fitting approach is adopted in which a novel relay algorithm is proposed to obtain the global solution. In addition, the technique incorporates model order determination. The transmitted data are considered as independently identically distributed random variables over some discrete finite set (e.g., set {±1, ±3}). A transformation scheme is suggested so that third-order cumulant analysis can be applied to this type of data. Simulation examples verify the feasibility and potential of the algorithm. Performance is compared with that of the noncumulant-based Sato scheme in terms of the steady state MSE and convergence rate.
Resumo:
Data from various stations having different measurement record periods between 1988 and 2007 are analyzed to investigate the surface ozone concentration, long-term trends, and seasonal changes in and around Ireland. Time series statistical analysis is performed on the monthly mean data using seasonal and trend decomposition procedures and the Box-Jenkins approach (autoregressive integrated moving average). In general, ozone concentrations in the Irish region are found to have a negative trend at all sites except at the coastal sites of Mace Head and Valentia. Data from the most polluted Dublin city site have shown a very strong negative trend of −0.33 ppb/yr with a 95% confidence limit of 0.17 ppb/yr (i.e., −0.33 ± 0.17) for the period 2002−2007, and for the site near the city of Cork, the trend is found to be −0.20 ± 0.11 ppb/yr over the same period. The negative trend for other sites is more pronounced when the data span is considered from around the year 2000 to 2007. Rural sites of Wexford and Monaghan have also shown a very strong negative trend of −0.99 ± 0.13 and −0.58 ± 0.12, respectively, for the period 2000−2007. Mace Head, a site that is representative of ozone changes in the air advected from the Atlantic to Europe in the marine planetary boundary layer, has shown a positive trend of about +0.16 ± 0.04 ppb per annum over the entire period 1988−2007, but this positive trend has reduced during recent years (e.g., in the period 2001−2007). Cluster analysis for back trajectories are performed for the stations having a long record of data, Mace Head and Lough Navar. For Mace Head, the northern and western clean air sectors have shown a similar positive trend (+0.17 ± 0.02 ppb/yr for the northern sector and +0.18 ± 0.02 ppb/yr for the western sector) for the whole period, but partial analysis for the clean western sector at Mace Head shows different trends during different time periods with a decrease in the positive trend since 1988 indicating a deceleration in the ozone trend for Atlantic air masses entering Europe.
Resumo:
The impact of human activity on the sediments of Todos os Santos Bay in Brazil was evaluated by elemental analysis and (13)C Nuclear Magnetic Resonance ((13)C NMR). This article reports a study of six sediment cores collected at different depths and regions of Todos os Santos Bay. The elemental profiles of cores collected on the eastern side of Frades Island suggest an abrupt change in the sedimentation regime. Auto-regressive Integrated Moving Average (ARIMA) analysis corroborates this result. The range of depths of the cores corresponds to about 50 years ago, coinciding with the implantation of major onshore industrial projects in the region. Principal Component Analysis of the (13)C NMR spectra clearly differentiates sediment samples closer to the Subae estuary, which have high contents of terrestrial organic matter, from those closer to a local oil refinery. The results presented in this article illustrate several important aspects of environmental impact of human activity on this bay. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
O objetivo da dissertação é avaliar o impacto da adoção do regime de metas na inércia da inflação. A inércia é analisada de acordo com procedimentos tradicionalmente adotados na literatura, através de modelos ARIMA. Em virtude das metas de inflação não serem imutáveis ao longo do tempo, propõe-se uma metodologia para se medir a inércia da taxa de inflação, onde esta possui dois componentes: a tendência e a parte transitória. A inércia da inflação será, então, medida pelo coeficiente com que a taxa de inflação converge para sua taxa de longo prazo.
Resumo:
Mandelbrot (1971) demonstrou a importância de considerar dependências de longo prazo na precificação de ativos - o método tradicional para mensurá-las, encontrado em Hurst (1951), faz uso da estatística R/S. Paralelamente a isso, Box e Jenkins (1976; edição original de 1970) apresentaram sua famosa metodologia para determinação da ordem dos parâmetros de modelos desenvolvidos no contexto de processos com memória de curto prazo, conhecidos por ARIMA (acrônimo do inglês Autoregressive Integrated Moving Average). Estimulados pela percepção de que um modelo que pretenda representar fielmente o processo gerador de dados deva explicar tanto a dinâmica de curto prazo quanto a de longo prazo, Granger e Joyeux (1980) e Hosking (1981) introduziram os modelos ARFIMA (de onde o F adicionado vem de Fractionally), uma generalização da classe ARIMA, nos quais a dependência de longo prazo estimada é relacionada ao valor do parâmetro de integração. Pode-se dizer que a partir de então processos com alto grau de persistência passaram a atrair cada vez mais o interesse de pesquisadores, o que resultou no desenvolvimento de outros métodos para estimá-la, porém sem que algum tenha se sobressaído claramente – e é neste ponto que o presente trabalho se insere. Por meio de simulações, buscou-se: (1) classificar diversos estimadores quanto a sua precisão, o que nos obrigou a; (2) determinar parametrizações razoáveis desses, entendidas aqui como aquelas que minimizam o viés, o erro quadrático médio e o desvio-padrão. Após rever a literatura sobre o tema, abordar estes pontos se mostrou necessário para o objetivo principal: elaborar estratégias de negociação baseadas em projeções feitas a partir da caracterização de dependências em dados intradiários, minuto a minuto, de ações e índices de ações. Foram analisadas as séries de retornos da ação Petrobras PN e do Índice Bovespa, com dados de 01/04/2013 a 31/03/2014. Os softwares usados foram o S-Plus e o R.
Resumo:
Este trabalho tem como objetivo verificar se o mercado de opções da Petrobras PN (PETR4) é ineficiente na forma fraca, ou seja, se as informações públicas estão ou não refletidas nos preços dos ativos. Para isso, tenta-se obter lucro sistemático por meio da estratégia Delta-Gama-Neutra que utiliza a ação preferencial e as opções de compra da empresa. Essa ação foi escolhida, uma vez que as suas opções tinham alto grau de liquidez durante todo o período estudado (01/10/2012 a 31/03/2013). Para a realização do estudo, foram consideradas as ordens de compra e venda enviadas tanto para o ativo-objeto quanto para as opções de forma a chegar ao livro de ofertas (book) real de todos os instrumentos a cada cinco minutos. A estratégia foi utilizada quando distorções entre a Volatilidade Implícita, calculada pelo modelo Black & Scholes, e a volatilidade calculada por alisamento exponencial (EWMA – Exponentially Weighted Moving Average) foram observadas. Os resultados obtidos mostraram que o mercado de opções de Petrobras não é eficiente em sua forma fraca, já que em 371 operações realizadas durante esse período, 85% delas foram lucrativas, com resultado médio de 0,49% e o tempo médio de duração de cada operação sendo pouco menor que uma hora e treze minutos.