988 resultados para Autonomous learning


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hypothesis that the same educational objective, raised as cooperative or collaborative learning in university teaching does not affect students’ perceptions of the learning model, leads this study. It analyses the reflections of two students groups of engineering that shared the same educational goals implemented through two different methodological active learning strategies: Simulation as cooperative learning strategy and Problem-based Learning as a collaborative one. The different number of participants per group (eighty-five and sixty-five, respectively) as well as the use of two active learning strategies, either collaborative or cooperative, did not show differences in the results from a qualitative perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mismatch between human capacity and the acquisition of Big Data such as Earth imagery undermines commitments to Convention on Biological Diversity (CBD) and Aichi targets. Artificial intelligence (AI) solutions to Big Data issues are urgently needed as these could prove to be faster, more accurate, and cheaper. Reducing costs of managing protected areas in remote deep waters and in the High Seas is of great importance, and this is a realm where autonomous technology will be transformative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The world is changing! It is volatile, uncertain, complex and ambiguous. As cliché as it may sound the evidence of such dynamism in the external environment is growing. Business-as-usual is more of the exception than the norm. Organizational change is the rule; be it to accommodate and adapt to change, or instigate and lead change. A constantly changing environment is a situation that all organizations have to live with. What makes some organizations however, able to thrive better than others? Many scholars and practitioners believe that this is due to the ability to learn. Therefore, this book on developing Learning and Development (L&D) professionals is timely as it explores and discusses trends and practices that impact organizations, the workforce and L&D professionals. Being able to learn and develop effectively is the cornerstone of motivation as it helps to address people’s need to be competent and to be autonomous (Deci & Ryan, 2002; Loon & Casimir, 2008; Ryan & Deci, 2000). L&D stimulates and empowers people to perform. Organizations that are better at learning at all levels; the individual, group and organizational level, will always have a better chance of surviving and performing. Given the new reality of a dynamic external environment and constant change, L&D professionals now play an even more important role in their organizations than ever before. However, L&D professionals themselves are not immune to the turbulent changes as their practices are also impacted. Therefore, the challenges that L&D professionals face are two-pronged. Firstly, in relation to helping and supporting their organization and its workforce in adapting to the change, whilst, secondly developing themselves effectively and efficiently so that they are able to be one-step ahead of the workforce that they are meant to help develop. These challenges are recognised by the CIPD, as they recently launched their new L&D qualification that has served as an inspiration for this book. L&D plays a crucial role at both strategic (e.g. organizational capability) and operational (e.g. delivery of training) levels. L&D professionals have moved from being reactive (e.g. following up action after performance appraisals) to being more proactive (e.g. shaping capability). L&D is increasingly viewed as a driver for organizational performance. The CIPD (2014) suggest that L&D is increasingly expected to not only take more responsibility but also accountability for building both individual and organizational knowledge and capability, and to nurture an organizational culture that prizes learning and development. This book is for L&D professionals. Nonetheless, it is also suited for those studying Human Resource Development HRD at intermediate level. The term ‘Human Resource Development’ (HRD) is more common in academia, and is largely synonymous with L&D (Stewart & Sambrook, 2012) Stewart (1998) defined HRD as ‘the practice of HRD is constituted by the deliberate, purposive and active interventions in the natural learning process. Such interventions can take many forms, most capable of categorising as education or training or development’ (p. 9). In fact, many parts of this book (e.g. Chapters 5 and 7) are appropriate for anyone who is involved in training and development. This may include a variety of individuals within the L&D community, such as line managers, professional trainers, training solutions vendors, instructional designers, external consultants and mentors (Mayo, 2004). The CIPD (2014) goes further as they argue that the role of L&D is broad and plays a significant role in Organizational Development (OD) and Talent Management (TM), as well as in Human Resource Management (HRM) in general. OD, TM, HRM and L&D are symbiotic in enabling the ‘people management function’ to provide organizations with the capabilities that they need.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent developments in automation, robotics and artificial intelligence have given a push to a wider usage of these technologies in recent years, and nowadays, driverless transport systems are already state-of-the-art on certain legs of transportation. This has given a push for the maritime industry to join the advancement. The case organisation, AAWA initiative, is a joint industry-academia research consortium with the objective of developing readiness for the first commercial autonomous solutions, exploiting state-of-the-art autonomous and remote technology. The initiative develops both autonomous and remote operation technology for navigation, machinery, and all on-board operating systems. The aim of this study is to develop a model with which to estimate and forecast the operational costs, and thus enable comparisons between manned and autonomous cargo vessels. The building process of the model is also described and discussed. Furthermore, the model’s aim is to track and identify the critical success factors of the chosen ship design, and to enable monitoring and tracking of the incurred operational costs as the life cycle of the vessel progresses. The study adopts the constructive research approach, as the aim is to develop a construct to meet the needs of a case organisation. Data has been collected through discussions and meeting with consortium members and researchers, as well as through written and internal communications material. The model itself is built using activity-based life cycle costing, which enables both realistic cost estimation and forecasting, as well as the identification of critical success factors due to the process-orientation adopted from activity-based costing and the statistical nature of Monte Carlo simulation techniques. As the model was able to meet the multiple aims set for it, and the case organisation was satisfied with it, it could be argued that activity-based life cycle costing is the method with which to conduct cost estimation and forecasting in the case of autonomous cargo vessels. The model was able to perform the cost analysis and forecasting, as well as to trace the critical success factors. Later on, it also enabled, albeit hypothetically, monitoring and tracking of the incurred costs. By collecting costs this way, it was argued that the activity-based LCC model is able facilitate learning from and continuous improvement of the autonomous vessel. As with the building process of the model, an individual approach was chosen, while still using the implementation and model building steps presented in existing literature. This was due to two factors: the nature of the model and – perhaps even more importantly – the nature of the case organisation. Furthermore, the loosely organised network structure means that knowing the case organisation and its aims is of great importance when conducting a constructive research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis we discuss in what ways computational logic (CL) and data science (DS) can jointly contribute to the management of knowledge within the scope of modern and future artificial intelligence (AI), and how technically-sound software technologies can be realised along the path. An agent-oriented mindset permeates the whole discussion, by stressing pivotal role of autonomous agents in exploiting both means to reach higher degrees of intelligence. Accordingly, the goals of this thesis are manifold. First, we elicit the analogies and differences among CL and DS, hence looking for possible synergies and complementarities along 4 major knowledge-related dimensions, namely representation, acquisition (a.k.a. learning), inference (a.k.a. reasoning), and explanation. In this regard, we propose a conceptual framework through which bridges these disciplines can be described and designed. We then survey the current state of the art of AI technologies, w.r.t. their capability to support bridging CL and DS in practice. After detecting lacks and opportunities, we propose the notion of logic ecosystem as the new conceptual, architectural, and technological solution supporting the incremental integration of symbolic and sub-symbolic AI. Finally, we discuss how our notion of logic ecosys- tem can be reified into actual software technology and extended towards many DS-related directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Description of the development of a product able to deliver an autonomous page construction from a predefined plan. The processes involve Machine Learning techniques for text fitting on shapes, Beam Search for associations and Deep Learning for autonomous cropping of images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniaturized flying robotic platforms, called nano-drones, have the potential to revolutionize the autonomous robots industry sector thanks to their very small form factor. The nano-drones’ limited payload only allows for a sub-100mW microcontroller unit for the on-board computations. Therefore, traditional computer vision and control algorithms are too computationally expensive to be executed on board these palm-sized robots, and we are forced to rely on artificial intelligence to trade off accuracy in favor of lightweight pipelines for autonomous tasks. However, relying on deep learning exposes us to the problem of generalization since the deployment scenario of a convolutional neural network (CNN) is often composed by different visual cues and different features from those learned during training, leading to poor inference performances. Our objective is to develop and deploy and adaptation algorithm, based on the concept of latent replays, that would allow us to fine-tune a CNN to work in new and diverse deployment scenarios. To do so we start from an existing model for visual human pose estimation, called PULPFrontnet, which is used to identify the pose of a human subject in space through its 4 output variables, and we present the design of our novel adaptation algorithm, which features automatic data gathering and labeling and on-device deployment. We therefore showcase the ability of our algorithm to adapt PULP-Frontnet to new deployment scenarios, improving the R2 scores of the four network outputs, with respect to an unknown environment, from approximately [−0.2, 0.4, 0.0,−0.7] to [0.25, 0.45, 0.2, 0.1]. Finally we demonstrate how it is possible to fine-tune our neural network in real time (i.e., under 76 seconds), using the target parallel ultra-low power GAP 8 System-on-Chip on board the nano-drone, and we show how all adaptation operations can take place using less than 2mWh of energy, a small fraction of the available battery power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To determine the mean critical fusion frequency and the short-term fluctuation, to analyze the influence of age, gender, and the learning effect in healthy subjects undergoing flicker perimetry. METHODS: Study 1 - 95 healthy subjects underwent flicker perimetry once in one eye. Mean critical fusion frequency values were compared between genders, and the influence of age was evaluated using linear regression analysis. Study 2 - 20 healthy subjects underwent flicker perimetry 5 times in one eye. The first 3 sessions were separated by an interval of 1 to 30 days, whereas the last 3 sessions were performed within the same day. The first 3 sessions were used to investigate the presence of a learning effect, whereas the last 3 tests were used to calculate short-term fluctuation. RESULTS: Study 1 - Linear regression analysis demonstrated that mean global, foveal, central, and critical fusion frequency per quadrant significantly decreased with age (p<0.05).There were no statistically significant differences in mean critical fusion frequency values between males and females (p>0.05), with the exception of the central area and inferonasal quadrant (p=0.049 and p=0.011, respectively), where the values were lower in females. Study 2 - Mean global (p=0.014), central (p=0.008), and peripheral (p=0.03) critical fusion frequency were significantly lower in the first session compared to the second and third sessions. The mean global short-term fluctuation was 5.06±1.13 Hz, the mean interindividual and intraindividual variabilities were 11.2±2.8% and 6.4±1.5%, respectively. CONCLUSION: This study suggests that, in healthy subjects, critical fusion frequency decreases with age, that flicker perimetry is associated with a learning effect, and that a moderately high short-term fluctuation is expected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física