987 resultados para Atomic systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose schemes for entanglement concentration and purification for qubit systems encoded in flying atomic pairs. We use cavity-quantum electrodynamics as an illustrative setting within which our proposals can be implemented. Maximally entangled pure states of qubits can be produced as a result of our protocols. In particular, the concentration protocol yields Bell states with the largest achievable theoretical probability while the purification scheme produces arbitrarily pure Bell states. The requirements for the implementation of these protocols are modest, within the state of the art, and we address all necessary steps in two specific setups based on experimentally mature microwave technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical windows of acetonitrile solutions doped with 0.1 m concentrations of several ionic liquids were examined by cyclic voltammetry at gold and platinum microelectrodes. These results were compared with those observed in the commonly used 0.1 m tetrabutylammonium perchlorate/acetonitrile system as well as with neat ionic liquids. The use of a trifluorotris(pentofluoroethyl)phosphate-based ionic liquid, specifically, as supporting electrolyte in acetonitrile solutions affords a wider anodic window, which is attributed to the high stability of the anionic component of these intrinsically conductive and thermally robust compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate numerically the existence of a spin-motive force acting on spin carriers when moving in a time and space dependent internal ?eld. This is the case for electrons in a one-dimensional wire with a precessing domain wall. The effect can be explained solely by adiabatic dynamics and is shown to exist for both classical and quantum systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many-electron systems confined to a quasi-one-dimensional geometry by a cylindrical distribution of positive charge have been investigated by density functional computations in the unrestricted local spin density approximation. Our investigations have been focused on the low-density regime, in which electrons are localized. The results reveal a wide variety of different charge and spin configurations, including linear and zig-zag chains, single-and double-strand helices, and twisted chains of dimers. The spin-spin coupling turns from weakly antiferromagnetic at relatively high density, to weakly ferromagnetic at the lowest densities considered in our computations. The stability of linear chains of localized charge has been investigated by analyzing the radial dependence of the self-consistent potential and by computing the dispersion relation of low-energy harmonic excitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives a general procedure for the numerical solution of the Lindblad equations that govern the coherences arising from multicoloured light interacting with a multilevel system. A systematic approach to finding the conservative and dissipative terms is derived and applied to the laser cooling of p-block elements. An improved numerical method is developed to solve the time-dependent master equation and results are presented for transient cooling processes. The method is significantly more robust, efficient and accurate than the standard method and can be applied to a broad range of atomic and molecular systems. Radiation pressure forces and the formation of dynamic dark states are studied in the gallium isotope 66Ga.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of accelerators, with compute architectures different and distinct from the CPU, has become a new research frontier in high-performance computing over the past ?ve years. This paper is a case study on how the instruction-level parallelism offered by three accelerator technologies, FPGA, GPU and ClearSpeed, can be exploited in atomic physics. The algorithm studied is the evaluation of two electron integrals, using direct numerical quadrature, a task that arises in the study of intermediate energy electron scattering by hydrogen atoms. The results of our ‘productivity’ study show that while each accelerator is viable, there are considerable differences in the implementation strategies that must be followed on each.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study a device formed by a Bose-Einstein condensate (BEC) coupled to the field of a cavity with a moving end mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The evolution of a two level system with a slowly varying Hamiltonian, modeled as a spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study quantum information flow in a model comprised of a trapped impurity qubit immersed in a Bose-Einstein-condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We show that this system undergoes a transition from Markovian to non-Markovian dynamics, which can be controlled by changing key parameters such as the condensate scattering length. In this way, one can realize a quantum simulator of both Markovian and non-Markovian open quantum systems, the latter ones being characterized by a reverse flow of information from the background gas (reservoir) to the impurity (system).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of B-spline basis sets in R-matrix theory for scattering processes has been investigated. In the present approach a B-spline basis is used for the description of the inner region, which is matched to the physical outgoing wavefunctions by the R-matrix. Using B-splines, continuum basis functions can be determined easily, while pseudostates can be included naturally. The accuracy for low-energy scattering processes is demonstrated by calculating inelastic scattering cross sections for e colliding on H. Very good agreement with other calculations has been obtained. Further extensions of the codes to quasi two-electron systems and general atoms are discussed as well as the application to (multi) photoionization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a one-dimensional scattering theory which enables us to describe a wealth of effects arising from the coupling of the motional degree of freedom of scatterers to the electromagnetic field. Multiple scattering to all orders is taken into account. The theory is applied to describe the scheme of a Fabry-Perot resonator with one of its mirrors moving. The friction force, as well as the diffusion, acting on the moving mirror is derived. In the limit of a small reflection coefficient, the same model provides for the description of the mechanical effect of light on an atom moving in front of a mirror.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the entanglement of two impurity qubits immersed in a Bose-Einstein condensate (BEC) reservoir. This open quantum system model allows for interpolation between a common dephasing scenario and an independent dephasing scenario by modifying the wavelength of the superlattice superposed to the BEC, and how this influences the dynamical properties of the impurities. We demonstrate the existence of rich dynamics corresponding to different values of reservoir parameters, including phenomena such as entanglement trapping, revivals of entanglement, and entanglement generation. In the spirit of reservoir engineering, we present the optimal BEC parameters for entanglement generation and trapping, showing the key role of the ultracold-gas interactions. Copyright (C) EPLA, 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate. Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the distribution of entanglement from a multimode optical driving source to a network of remote and independent optomechanical systems. By focusing on the tripartite case, we analyse the effects that the features of the optical input states have on the degree and sharing structure of the distributed, fully mechanical, entanglement. This study, which is conducted looking at the mechanical steady state, highlights the structure of the entanglement distributed among the nodes and determines the relative efficiency between bipartite and tripartite entanglement transfer. We discuss a few open points, some of which are directed towards the bypassing of such limitations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.