875 resultados para Asset Management, Built Environment, Engineering Asset Management, Life Cycle Management, Physical Asset Management
Resumo:
This paper presents the findings from a study into the current exploitation of computer-supported collaborative working (CSCW) in design for the built environment in the UK. The research is based on responses to a web-based questionnaire. Members of various professions, including civil engineers, architects, building services engineers, and quantity surveyors, were invited to complete the questionnaire. The responses reveal important trends in the breadth and size of project teams at the same time as new pressures are emerging regarding team integration and efficiency. The findings suggest that while CSCW systems may improve project management (e.g., via project documentation) and the exchange of information between team members, it has yet to significantly support those activities that characterize integrated collaborative working between disparate specialists. The authors conclude by combining the findings with a wider discussion of the application of CSCW to design activity-appealing for CSCW to go beyond multidisciplinary working to achieve interdisciplinary working.
Resumo:
Purpose – The purpose of this research is to show that reliability analysis and its implementation will lead to an improved whole life performance of the building systems, and hence their life cycle costs (LCC). Design/methodology/approach – This paper analyses reliability impacts on the whole life cycle of building systems, and reviews the up-to-date approaches adopted in UK construction, based on questionnaires designed to investigate the use of reliability within the industry. Findings – Approaches to reliability design and maintainability design have been introduced from the operating environment level, system structural level and component level, and a scheduled maintenance logic tree is modified based on the model developed by Pride. Different stages of the whole life cycle of building services systems, reliability-associated factors should be considered to ensure the system's whole life performance. It is suggested that data analysis should be applied in reliability design, maintainability design, and maintenance policy development. Originality/value – The paper presents important factors in different stages of the whole life cycle of the systems, and reliability and maintainability design approaches which can be helpful for building services system designers. The survey from the questionnaires provides the designers with understanding of key impacting factors.
Resumo:
Innovation in the built environment involves multiple actors with diverse motivations. Policy-makers find it difficult to promote changes that require cooperation from these numerous and dispersed actors and to align their sometimes divergent interests. Established research traditions on the economics and management of innovation pay only limited attention to stakeholder choices, engagement and motivation. This paper reviews the insights that emerge as research in these traditions comes into contact with work on innovation from sociological and political perspectives. It contributes by highlighting growing areas of research on user involvement in complex innovation, collective action, distributed innovation and transition management. To differing extents, these provide approaches to incorporate the motivations of different actors into theoretical understanding. These indicate new directions for research that promise to enrich understanding of innovation.
Resumo:
This introductory chapter sets the scene for the book, providing an overview of sustainability in the built environment. With a bias towards buildings and the urban environment, it illustrates the range of issues that impinge upon global carbon reduction and the mechanisms available to help bring about change. Climate change, and its impact on built environment, is briefly introduced and sustainability in the built environment and associated factors are described. The specific topics relating to sustainable design and management of the built environment, including policy and assessment, planning, energy, water and waste, technology, supply and demand, occupants’ behaviour and management have been highlighted. This chapter emphasises the importance of a systemic approach in delivering a sustainable built environment.
Resumo:
The research will explore views on inclusive design policy implementation and learning strategy used in practice by Local Authorities’ planning, building control and policy departments in England. It reports emerging research findings. The research aim was developed from an extensive literature review, and informed by a pilot study with relevant Local Authority departments. The pilot study highlighted gaps within the process of policy implementation, a lack of awareness of the process and flaws in the design guidance policy. This has helped inform the development of a robust research design using both a survey and semi-structured interviews. The questionnaire targeted key employees within Local Authorities designed to establish how employees learn about inclusive design policy and to determine their views on current approaches of inclusive design policy implementation adopted by their Local Authorities. The questionnaire produces 117 responses. Interestingly approximately 9 out of 129 Local Authorities approached claimed that they were unable to participate either because an inclusive design policy was not adopted or they were faced with a high workload and thus unable to take part. An emerging finding is a lack of understanding of inclusive design problems, which may lead to problem with inclusive design policy implementation, and thus adversely affect how the built environment can be experienced. There is a strong indication from the survey respondents indicating that they are most likely to learn about inclusive design from policy guides produced by their Local Authorities and from their colleagues.
Resumo:
Building Information Modeling (BIM) is the process of structuring, capturing, creating, and managing a digital representation of physical and/or functional characteristics of a built space [1]. Current BIM has limited ability to represent dynamic semantics, social information, often failing to consider building activity, behavior and context; thus limiting integration with intelligent, built-environment management systems. Research, such as the development of Semantic Exchange Modules, and/or the linking of IFC with semantic web structures, demonstrates the need for building models to better support complex semantic functionality. To implement model semantics effectively, however, it is critical that model designers consider semantic information constructs. This paper discusses semantic models with relation to determining the most suitable information structure. We demonstrate how semantic rigidity can lead to significant long-term problems that can contribute to model failure. A sufficiently detailed feasibility study is advised to maximize the value from the semantic model. In addition we propose a set of questions, to be used during a model’s feasibility study, and guidelines to help assess the most suitable method for managing semantics in a built environment.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.
Resumo:
This paper introduces a new emerging software component, the idea management system, which helps to gather, organise, select and manage the innovative ideas provided by the communities gathered around organisations or enterprises. We define the notion of the idea life cycle, which provides a framework for characterising tools and techniques that drive the evolution of community submitted data inside idea management systems. Furthermore, we show the dependencies between the community-created information and the enterprise processes that are a result of using idea management systems and point out the possible benefits.
Resumo:
"Issued originally December 1980 ; revised May 1982 ; revised November 1987."
Resumo:
"Prepared for use by the Cooperative Extension System"--Cover.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
This chapter establishes a framework for the governance of intermodal terminals throughout their life cycle, based on the product life cycle. The framework covers the initial planning by the public sector, the public/private split in funding and ownership, the selection of an operator, ensuring fair access to all users, and finally reconcessioning the terminal to a new operator, managing the handover and maintaining the terminal throughout its life cycle. This last point is especially important as industry conditions change and the terminal's role in the transport network comes under threat, either by a lack of demand or by increased demand requiring expansion, redesign and reinvestment. Each stage of the life cycle framework is operationalised based on empirical examples drawn from research by the authors on intermodal terminal planning and funding, the tender process and concession and operation contracts. In future the framework can be applied in additional international contexts to form a basis for transport cost analysis, logistics planning and government policy.
Resumo:
Tämä diplomityö tutkii eri elinkaarihallinnan menetelmiä ja vertaa niitä TVO:n menetelmiin. Lisäksi TVO:n prosessin ongelmakohdat tunnistetaan ja niihin esitetään ratkaisuja. Vertailukohteina toimii ydinvoimateollisuuden lisäksi vesivoima, fossiiliset voimalaitokset sekä paperiteollisuus. Sähkön hinnan jatkaessa laskuaan on elinkaariajattelusta tullut ajankohtaista myös ydinvoimayhtiöille. Ydinvoimalaitoksien pitkän suunnitellun käyttöiän ansiosta laitoksen elinkaaren aikana voi tapahtua useita asioita, jotka vaikuttavat laitoksen investointitarpeisiin. Turvallisen sähköntuotannon varmistamiseksi eri laitososia on joko muokattava tai uusittava. Elinkaariajatteluun kuuluu tehokas laitoksen kunnon valvonta, laitoksen ikääntymiseen vaikuttavien ilmiöiden tunnistaminen, sekä ikääntymistä hillitsevien toimenpiteiden pitkän tähtäimen suunnittelu. Hyvällä ennakkosuunnittelulla pyritään varmistamaan se, että laitoksella voidaan tuottaa sähköä koko sen jäljellä olevan käyttöiän aikana. Kun tarpeiden tunnistus ja suunnittelu tehdään hyvissä ajoin mahdollistetaan myös investointien optimointi. Paras hyöty pyritään saamaan ajoittamalla oikeat investoinnit oikeaan aikaan.