917 resultados para Anthropomorphic robots
Resumo:
Pattison,T. and Wilson,M.S., 'Flocking in Simulation and Robots - A Review', Towards Intelligent Mobile Robots; Proceedings of the 4th annual British conference on autonomous mobile robotics and autonomous systems (TIMR'03), 2003, pp 90-99
Resumo:
Walker,J. and Wilson,M.S., 'Lifelong Evolution for Adaptive Robots', Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2002, October, pp 984--989
Resumo:
M.H. Lee, Q. Meng and F. Chao, 'Developmental Learning for Autonomous Robots', Robotics and Autonomous Systems, 55(9), pp 750-759, 2007.
Resumo:
ROSSI: Emergence of communication in Robots through Sensorimotor and Social Interaction, T. Ziemke, A. Borghi, F. Anelli, C. Gianelli, F. Binkovski, G. Buccino, V. Gallese, M. Huelse, M. Lee, R. Nicoletti, D. Parisi, L. Riggio, A. Tessari, E. Sahin, International Conference on Cognitive Systems (CogSys 2008), University of Karlsruhe, Karlsruhe, Germany, 2008 Sponsorship: EU-FP7
Resumo:
The plurality of models of ultimate reality is a central problem for religious philosophy. This essay sketches what is involved in mounting comparative inquiries across the plurality of models. In order to illustrate what advance would look like in such a comparative inquiry, an argument is presented to show that highly anthropomorphic models of ultimate reality are inferior to a number of competitors. This paper was delivered as a keynote address during the APA Pacific 2007 Mini-Conference on Models of God.
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
The growing number of robotic solutions geared to interact socially with humans, social robots, urge the study of the factors that will facilitate or hinder future human robot collaboration. Hence the research question: what are the factors that predict intention to work with a social robot in the near future. To answer this question the following socio-cognitive models were studied, the theory of reasoned action, the theory of planned behavior and the model of goal directed behavior. These models purport that all the other variables will only have an indirect effect on behavior. That is, through the variables of the model. Based on the research on robotics and social perception/ cognition, social robot appearance, belief in human nature uniqueness, perceived warmth, perceived competence, anthropomorphism, negative attitude towards robots with human traits and negative attitudes towards interactions with robots were studied for their effects on attitude towards working with a social robot, perceived behavioral control, positive anticipated emotions and negative anticipated emotions. Study 1 identified the social representation of robot. Studies 2 to 5 investigated the psychometric properties of the Portuguese version of the negative attitude towards robots scale. Study 6 investigated the psychometric properties of the belief in human nature uniqueness scale. Study 7 tested the theory of reasoned action and the theory of planned behavior. Study 8 tested the model of goal directed behavior. Studies 7 and 8 also tested the role of the external variables. Study 9 tested and compared the predictive power of the three socio-cognitive models. Finally conclusion are drawn from the research results, and future research suggestions are offered.
Resumo:
Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
The trajectory planning of redundant robots is an important area of research and efficient optimization algorithms have been investigated in the last years. This paper presents a new technique that combines the closed-loop pseudoinverse method with genetic algorithms. In this case the trajectory planning is formulated as an optimization problem with constraints.
Resumo:
Este trabalho foi elaborado no âmbito do Mestrado de Ensino de Matemática do 3º Ciclo do Ensino Básico e Secundário da Universidade da Madeira, no ano letivo de 2012/2013. Os grandes objetivos deste estudo são os de analisar qualitativamente uma atividade, para compreender como é que os alunos aprendem trigonometria, utilizando os robots NXT da Lego. De igual modo, se procede também, de forma sucinta, à apresentação do trabalho desenvolvido pelo grupo de estágio, ao longo da Prática de Ensino Supervisionado. Para a realização da investigação, foram recolhidos dados pelo investigador, através de registos audiovisuais do trabalho dos alunos, com câmara e vídeo. Com o fim de melhor estudar o problema aqui apresentado, o mesmo foi dissecado em três questões de investigação: (a) Que aprendizagens os alunos realizam com a montagem, programação e interação com os robots? (b) De que forma é que os alunos aprendem trigonometria, quando utilizam os Robots? (c) Quais as dificuldades manifestadas pelos alunos na resolução de problemas? As questões de investigação iluminaram a análise dos dados. Das conclusões que advêm deste estudo destaca-se o papel essencial da robótica e dos materiais manipuláveis, na construção e concetualização do conhecimento dos alunos.
Resumo:
This paper presents the development of a fish-like robot called Bro-Fish. Bro-Fish aims to be an educational toy dedicated to teaching mechanics, programming and the physics of floating objects to youngsters. The underlying intention is to awaken the interest of children for technology, especially biomimetic (biologically inspired) approaches, in order to promote sustainability and raise the level of ecological awareness. The main focus of this project was to create a robot with carangiform locomotion and controllable swimming, providing the opportunity to customize parts and experiment with the physics of floating objects. Therefore, the locomotion principles of fishes and mechanisms developed in related projects were analysed. Inspired by this background knowledge, a prototype was designed and implemented. The main achievement is the new tail mechanism that propels the robot. The tail resembles the undulation motion of fish bodies and is actuated in an innovative way, triggered by an elegant movement of a rotating helicoidal. First experimental tests revealed the potential of the proposed methodology to effectively generate forward propulsion.