922 resultados para Análise termogravimétrica


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tricalcium phosphate ceramics has been widely investigated in the last years due its bioresorbable behavior. The limiting factor of the application of these materials as temporary implants is its low strength resistance. The tricalcium phosphate presents an allotropic transformation β→α around 1250 ºC that degrades its resistance. Some studies have been developed in order to densify this material at this temperature range. The objective of this work is to study the influence of the addition of magnesium oxide (MgO) in the sintering of β-TCP. The processing route was uniaxial hot pressing and its objective was to obtain dense samples. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements, analyzed of the microstructure. The addition of magnesium oxide doesn t cause an improvement of the mechanical strength in relation to material without additive.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marble and granite waste come from the process of mining of those ornamental rocks for use in the building industry. Brazil is one of the largest producers of blocks or finished products of ornamental rocks, extracting about 5.2 tons / year. The largest national producers are the states of Espírito Santo, Minas Gerais and Bahia which account for 80% of the Brazilian production. However, the waste total amount during processing of these blocks reaches 40% of the total. The use of the waste produced by this industry in white ceramics could be a form of disposition, because these materials, are thrownasa mud directly at decantation ponds, wastelands or in rivers, without any treatment. The present work has as main purpose to study the influence that reject of the ornamental rocks on the physical and mechanical properties of white ceramics. X-Ray characterizations of raw materials by were performed X-Ray fluorescence, X-Ray diffraction, granulometric, thermogravimetric and thermodiferencial analysis, five formulations were made (0, 10, 20, 30, 40% in granite weight) wich were burned at three temperatures: 1100°C, 1150°C and 1200ºC with 60 minutes of sorling time. After sintering, the samples were submitted to different analyser absorption of water, linear retraction, apparent porosity, apparent specific mass, flexival stronght, and scanning were obtained microscopy. Compatible technological properties within the limits demanded for the production of porcelainized stoneware

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sector of civil construction is strongly related to the red ceramic industry. This sector uses clay as raw material for manufacturing of various products such as ceramic plates. In this study, two types of clay called clay 1 and clay 2 were collected on deposit in Ielmo Marinho city (RN) and then characterized by thermogravimetric analysis (TG/DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), rational analysis and particle size distribution and dilatometric analyses. Ceramic plates were manufactured by uniaxial pressing and by extrusion. The plates obtained by pressing were produced from the four formulations called 1, 2, 3 and 4, which presented, respectively, the following proportions by mass: 66.5% clay 1 and 33.5% clay 2, 50% clay 1 and 50% clay 2, 33.5% clay 1 and 66.5% clay 2, 25% clay 1 and 75% clay 2. After firing at 850, 950 and 1050 °C with heating rate of 10 °C/min and soaking time of 30 minutes, the following technological properties were determined: linear firing shrinkage, water absorption, apparent porosity, apparent specific mass and tensile strength (3 points). The formulation containing 25% clay 1 produced plates with most satisfactory results of water absorption and mechanical resistance, because of that it was chosen for manufacturing plates by extrusion. A single firing cycle was established for these plates, which took place as follow: heating rate of 2 °C/min up to 600 ºC with soaking time of 60 minutes, followed by heating using the same rate up to 1050 ºC with soaking time of 30 minutes. After this cycle, the same technological properties investigated in the plates obtained by pressing were determined. The results indicate (according to NRB 13818/1997) that the plates obtained by pressing from the mixture containing 25 wt% clay 1, after firing at 1050 °C, reach the specifications for semi-porous coating (BIIb). On the other hand, the plates obtained by extrusion were classified as semi-stoneware (group AIIa)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wear mechanisms and thermal history of two non-conforming sliding surfaces was investigated in laboratory. A micro-abrasion testing setup was used but the traditional rotative sphere method was substituted by a cylindrical surface of revolution which included seven sharp angles varying between 15o to 180o. The micro-abrasion tests lead to the investigation on the polyurethane response at different contact pressures. For these turned counterfaces with and without heat treatment. Normal load and sliding speeds were changed. The sliding distance was fixed at 5 km in each test. The room and contact temperatures were measured during the tests. The polyurethane was characterized using tensile testing, hardness Shore A measurement, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Thermomechanical Analyze (TMA). The Vickers micro-hardness of the steel was measured before and after the heat treatment and the metallographic characterization was also carried out. Worn surface of polyurethane was analysed using Scanning Electron Microscope (SEM) and EDS (Electron Diffraction Scanning) microanalyses. Single pass scratch testing in polyurethane using indenters with different contact angles was also carried out. The scar morphology of the wear, the wear mechanism and the thermal response were analyzed in order to correlate the conditions imposed by the pressure-velocity pair to the materials in contact. Eight different wear mechanisms were identified on the polyurethane surface. It was found correlation between the temperature variation and the wear scar morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent decades, ceramic products have become indispensable to the technological development of humanity, occupying important positions in scientific production and consequently in industrial production. One area of the economy that continues to absorb large amounts of the products of this sector is Construction. Among the branches of the ceramic industry, there are the red ceramic industry which is traditionally the basis of that economic sector. Among the reasons for which the red ceramic industry became popular in the country, and specifically in Rio Grande do Norte, is the abundance of this raw material, easily found throughout the national territory. However, it appears that the red ceramic industry has deficiencies in technology and skilled labor, resulting in the production of ceramic goods with low added value. Among the factors that determine the quality of the ceramic products red has the proper formulation of the ceramic mass, the conformation and the firing temperature. Thus, the overall goal of this work is to study the mineralogical and technological properties, two clays from the region of the Wasteland Potiguar industrial ceramist. Therefore, the raw materials were characterized by analysis of Xray diffraction (XRD) analysis, X-ray fluorescence (XRF), particle size analysis (FA), scanning electron microscopy (SEM), optical microscopy (OM ), plasticity index (PI), thermal gravimetric analysis (TGA) and differential thermal analysis (DTA). The technological properties of the material were analyzed by water absorption tests (AA%) porosity (% PA), the linear shrinkage (RT%), apparent density (MEA), loss on ignition (PF%) and flexural strength three points (TRF)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the process of the salt production, the first the salt crystals formed are disposed of as industrial waste. This waste is formed basically by gypsum, composed of calcium sulfate dihydrate (CaSO4.2H2O), known as carago cru or malacacheta . After be submitted the process of calcination to produce gypsum (CaSO4.0,5H2O), can be made possible its application in cement industry. This work aims to optimize the time and temperature for the process of calcination of the gypsum (carago) for get beta plaster according to the specifications of the norms of civil construction. The experiments involved the chemical and mineralogical characterization of the gypsum (carago) from the crystallizers, and of the plaster that is produced in the salt industry located in Mossoró, through the following techniques: x-ray diffraction (XRD), x-ray fluorescence (FRX), thermogravimetric analysis (TG/DTG) and scanning electron microscopy (SEM) with EDS. For optimization of time and temperature of the process of calcination was used the planning three factorial with levels with response surfaces of compressive mechanical tests and setting time, according norms NBR-13207: Plasters for civil construction and x-ray diffraction of plasters (carago) beta obtained in calcination. The STATISTICA software 7.0 was used for the calculations to relate the experimental data for a statistical model. The process for optimization of calcination of gypsum (carago) occurred in the temperature range from 120° C to 160° C and the time in the range of 90 to 210 minutes in the oven at atmospheric pressure, it was found that with the increase of values of temperature of 160° C and time calcination of 210 minutes to get the results of tests of resistance to compression with values above 10 MPa which conform to the standard required (> 8.40) and that the X-ray diffractograms the predominance of the phase of hemidrato beta, getting a beta plaster of good quality and which is in accordance with the norms in force, giving a by-product of the salt industry employability in civil construction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Discussions about pollution caused by vehicles emission are old and have been developed along the years. The search for cleaner technologies and frequent weather alterations have been inducing industries and government organizations to impose limits much more rigorous to the contaminant content in fuels, which have an direct impact in atmospheric emissions. Nowadays, the quality of fuels, in relation to the sulfur content, is carried out through the process of hydrodesulfurization. Adsorption processes also represent an interesting alternative route to the removal of sulfur content. Both processes are simpler and operate to atmospheric temperatures and pressures. This work studies the synthesis and characterization of aluminophosphate impregnate with zinc, molybdenum or both, and its application in the sulfur removal from the gasoline through the adsorption process, using a pattern gasoline containing isooctane and thiophene. The adsorbents were characterized by x-ray diffraction, differential thermal analysis (DTG), x-ray fluorescence and scanning electron microscopy (SEM). The specific area, volume and pore diameter were determined by BET (Brunauer- Emmet-Teller) and the t-plot method. The sulfur was quantified by elementary analysis using ANTEK 9000 NS. The adsorption process was evaluated as function of the temperature variation and initial sulfur content through the adsorption isotherm and its thermodynamic parameters. The parameters of entropy (ΔS), enthalpy variation (ΔH) and free Gibbs energy (ΔG) were calculated through the graph ln(Kd) versus 1/T. Langmuir, Freundlich and Langmuir-Freundlich models were adjusted to the experimental data, and the last one had presented better results. The thermodynamic tests were accomplished in different temperatures, such as 30, 40 and 50ºC, where it was concluded the adsorption process is spontaneous and exothermic. The kinetic of adsorption was studied by 24 h and it showed that the capability adsorption to the adsorbents studied respect the following order: MoZnPO > MoPO > ZnPO > AlPO. The maximum adsorption capacity was 4.91 mg/g for MoZnPO with an adsorption efficiency of 49%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um método de produção para a obtenção de cinza de casca de arroz (CCA) de elevada reatividade a partir de um processo de combustão não controlado. São detalhados os processos de obtenção da CCA, assim como sua atividade pozolânica. Pela Análise Termogravimétrica (TGA), foi possível quantificar o consumo de portlandita por parte da CCA, ou seja, a reação pozolânica. Adicionalmente, foram preparadas argamassas com diferentes porcentagens de CCA (5%, 10% e 15%) com o objetivo de comprovar sua influência nas propriedades mecânicas. Os resultados obtidos mostram que a CCA em estudo apresenta elevada reatividade, podendo ser utilizada como uma fonte alternativa da sílica ativa (SA).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of sediment in water bodies presents great environmental importance, because of its ability to adsorb the pollutants, they may facilitate the understanding of the history of the current quality of the water system. Depending on how it is done the collection, analysis can show both a recent contamination as old. The detailed characterization of the sediment may reveal details that can understand how each type of pollutant interacts with the material given its composition. In this work it has developed a systematic methodology to characterize samples of sediment, with the aim to understand how a series of metal is distributed in different size fractions of the sediment. This study was conducted in five samples of sediment (P1, P2, P3a, P3B and P3c) collected in Jundiaí river, one of the most important tributaries of the river Potengi in the region of Macaíba, RN. The characterization was made with the samples previously sieved into meshes with different granulometries (+8#, -8+16#, -16+65# - 65+100#,-100+200#,-200+250# and -250#), using the following techniques: Analysis of specific surface area by BET method, determining the levels of organic matter (OM%) and humidity through the gravimetry and Analysis Thermogravimetric (TG), Infrared Spectroscopy in a Fourier transform (FTIR ), Analysis of X ray diffraction (XRD), analysis of heavy metals by optical emission spectrometry with the Argon Plasma (ICP-OES). The analyzed elements were Al, Cd, Cr, Cu, Fe, Mn, Ni, Zn and P. In addition to the techniques of characterization above, was also made the rebuilding of the samples P1, P2 and P3B in relation to the levels of organic matter and concentration of heavy metals. Then, the results of the recomposed samples were compared with those obtained in crude samples, showing great consistency. The gravimetry, used in determining the levels of organic matter, was not considered an appropriate method because the clay minerals present in the sediment samples analyzed fall apart in the same range of temperature (550-600 0C) used in roasting (600 0C). The results also showed the trend of organic matter and heavy metals to focus on the thin fractions, although the largest concentrations of metals are in intermediate fractions