976 resultados para Algebraic topology
Resumo:
Population viability analyses (PVA) are increasingly used in metapopulation conservation plans. Two major types of models are commonly used to assess vulnerability and to rank management options: population-based stochastic simulation models (PSM such as RAMAS or VORTEX) and stochastic patch occupancy models (SPOM). While the first set of models relies on explicit intrapatch dynamics and interpatch dispersal to predict population levels in space and time, the latter is based on spatially explicit metapopulation theory where the probability of patch occupation is predicted given the patch area and isolation (patch topology). We applied both approaches to a European tree frog (Hyla arborea) metapopulation in western Switzerland in order to evaluate the concordances of both models and their applications to conservation. Although some quantitative discrepancies appeared in terms of network occupancy and equilibrium population size, the two approaches were largely concordant regarding the ranking of patch values and sensitivities to parameters, which is encouraging given the differences in the underlying paradigms and input data.
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
This paper focuses on the connection between the Brauer group and the 0-cycles of an algebraic variety. We give an alternative construction of the second l-adic Abel-Jacobi map for such cycles, linked to the algebraic geometry of Severi-Brauer varieties on X. This allows us then to relate this Abel-Jacobi map to the standard pairing between 0-cycles and Brauer groups (see [M], [L]), completing results from [M] in this direction. Second, for surfaces, it allows us to present this map according to the more geometrical approach devised by M. Green in the framework of (arithmetic) mixed Hodge structures (see [G]). Needless to say, this paper owes much to the work of U. Jannsen and, especially, to his recently published older letter [J4] to B. Gross.
Resumo:
In this note we describe the intersection of all quadric hypersur- faces containing a given linearly normal smooth projective curve of genus n and degree 2n + 1
Resting-state temporal synchronization networks emerge from connectivity topology and heterogeneity.
Resumo:
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain's anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.
Resumo:
Exact solutions of the classical equations corresponding to the leading-logarithm approximation are obtained. They are classified by an (integer) topological number.
Resumo:
The action of individual type II DNA topoisomerases has been followed in real time by observing the elastic response of single DNA molecules to sequential strand passage events. Micromanipulation methods provide a complementary approach to biochemical studies for investigating the mechanism of DNA topoisomerases.
Resumo:
Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show that, at long times, the velocity correlation function decays with a negative algebraic tail. The exponent depends on the confining geometry, rather than the spatial dimensionality. We can account for the tail by using a simple mode-coupling theory which exploits the fact that the sound wave generated by a moving particle becomes diffusive.
Resumo:
We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention on the interplay between topological disorder and synchronization features of networks. First, we analyze synchronization time T in random networks, and find a scaling law which relates T to network connectivity. Then, we compare synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than a disordered network. This fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to having a nonrandom topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.
Resumo:
Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.
Resumo:
Higher risk for long-term behavioral and emotional sequelae, with attentional problems (with or without hyperactivity) is now becoming one of the hallmarks of extreme premature (EP) birth and birth after pregancy conditions leading to poor intra uterine growth restriction (IUGR) [1,2]. However, little is know so far about the neurostructural basis of these complexe brain functional abnormalities that seem to have their origins in early critical periods of brain development. The development of cortical axonal pathways happens in a series of sequential events. The preterm phase (24-36 post conecptional weeks PCW) is known for being crucial for growth of the thalamocortical fiber bundles as well as for the development of long projectional, commisural and projectional fibers [3]. Is it logical to expect, thus, that being exposed to altered intrauterine environment (altered nutrition) or to extrauterine environment earlier that expected, lead to alterations in the structural organization and, consequently, alter the underlying white matter (WM) structure. Understanding rate and variability of normal brain development, and detect differences from typical development may offer insight into the neurodevelopmental anomalies that can be imaged at later stages. Due to its unique ability to non-invasively visualize and quantify in vivo white matter tracts in the brain, in this study we used diffusion MRI (dMRI) tractography to derive brain graphs [4,5,6]. This relatively simple way of modeling the brain enable us to use graph theory to study topological properties of brain graphs in order to study the effects of EP and IUGR on childrens brain connectivity at age 6 years old.
Resumo:
BACKGROUND: Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is an integral membrane protein that has only poorly been characterized to date. In particular, a precise membrane topology is thus far elusive. Here, we explored a novel strategy to map the membrane topology of HCV NS4B. METHODS: Selective permeabilization of the plasma membrane, maleimide-polyethyleneglycol (mPEG) labeling of natural or engineered cysteine residues and immunoblot analyses were combined to map the membrane topology of NS4B. Cysteine substitutions were introduced at carefully selected positions within NS4B and their impact on HCV RNA replication and infectious virus production analyzed in cell culture. RESULTS: We established a panel of viable HCV mutants with cysteine substitutions at strategic positions within NS4B. These mutants are infectious and replicate to high levels in cell culture. In parallel, we adapted and optimized the selective permeabilization and mPEG labeling techniques to Huh-7 human hepatocellular carcinoma cells which can support HCV infection and replication. CONCLUSIONS: The newly established experimental tools and techniques should allow us to refine the membrane topology of HCV NS4B in a physiological context. The expected results should enhance our understanding of the functional architecture of the HCV replication complex and may provide new opportunities for antiviral intervention in the future.
Resumo:
Contingut del Pòster presentat al congrés New Trends in Dynamical Systems
Resumo:
Computer simulations of the dynamics of a colloidal particle suspended in a fluid confined by an interface show that the asymptotic decay of the velocity correlation functions is algebraic. The exponents of the long-time tails depend on the direction of motion of the particle relative to the surface, as well as on the specific nature of the boundary conditions. In particular, we find that for the angular velocity correlation function, the decay in the presence of a slip surface is faster than the one corresponding to a stick one. An intuitive picture is introduced to explain the various long-time tails, and the simulations are compared with theoretical expressions where available.