112 resultados para Airfoil
Resumo:
This work proposes a novel approach to compute transonic limit-cycle oscillations using high-fidelity analysis. Computational-Fluid-Dynamics based harmonic balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a new methodology to determine the unknown frequency of oscillations, enabling harmonic balance methods to accurately capture limit-cycle oscillations; this is achieved by defining a frequency-updating procedure based on a coupled computational-fluid-dynamics/computational-structural-dynamics harmonic balance formulation to find the limit-cycle oscillation condition. A pitch/plunge airfoil and delta wing aerodynamic and respective linear structural models are used to validate the new method against conventional time-domain simulations. Results show consistent agreement between the proposed and time-marching methods for both limit-cycle oscillation amplitude and frequency while producing at least a one-order-of-magnitude reduction in computational time.
Resumo:
The great importance in selecting the profile of an aircraft wing concerns the fact that its relevance in the performance thereof; influencing this displacement costs (fuel consumption, flight level, for example), the conditions of flight safety (response in critical condition) of the plane. The aim of this study was to examine the aerodynamic parameters that affect some types of wing profile, based on wind tunnel testing, to determine the aerodynamic efficiency of each one of them. We compared three types of planforms, chosen from considerations about the characteristics of the aircraft model. One of them has a common setup, and very common in laboratory classes to be a sort of standard aerodynamic, it is a symmetrical profile. The second profile shows a conFiguration of the concave-convex type, the third is also a concave-convex profile, but with different implementation of the second, and finally, the fourth airfoil profile has a plano-convex. Thus, three different categories are covered in profile, showing the main points of relevance to their employment. To perform the experiment used a wind tunnel-type open circuit, where we analyzed the pressure distribution across the surface of each profile. Possession of the drag polar of each wing profile can be, from the theoretical basis of this work, the aerodynamic characteristics relate to the expected performance of the experimental aircraft, thus creating a selection model with guaranteed performance aerodynamics. It is believed that the philosophy used in this dissertation research validates the results, resulting in an experimental alternative for reliable implementation of aerodynamic testing in models of planforms
Resumo:
The study of aerodynamic loading variations has many engineering applications, including helicopter rotor blades, wind turbines and turbo machinery. This work uses a Vortex Method to make a lagrangian description of the a twodimensional airfoil/ incident wake vortex interaction. The flow is incompressible, newtonian, homogeneus and the Reynolds Number is 5x105 .The airfoil is a NACA 0018 placed a angle of attack of the 0° and 5°simulates with the Painel Method with a constant density vorticity panels and a generation poit is near the painel. The protector layer is created does not permit vortex inside the body. The vortex Lamb convection is realized with the Euler Method (first order) and Adans-Bashforth (second order). The Random Walk Method is used to simulate the diffusion. The circular wake has 366 vortex all over positive or negative vorticity located at different heights with respect to the airfoil chord. The Lift was calculated based in the algorithm created by Ricci (2002). This simulation uses a ready algorithm vatidated with single body does not have a incident wake. The results are compared with a experimental work The comparasion concludes that the experimental results has a good agrement with this papper
Resumo:
One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil
Resumo:
This work describes an optical device for the simultaneous recording of shadowgrams and schlieren images, and some results are presented concerning its applications to the study of plasma assisted flow control in airfoil models. This approach offers many advantages in comparison to other methods, specially because the use of tracer particles (like smoke in wind tunnels) is not required for the experiments, thus avoiding contaminations in the electric discharges or air flows. Besides, while schlieren images reveal the refractive index gradients in the area of study, shadowgrams detect the second order spatial derivatives of the refractive indexes. Therefore, the simultaneous recording of these different images may give interesting information about the phenomena under study. In this paper, these images were used to confirm the existence of vortex structures in the flow induced by corona discharges on airfoil models. These structures are a possible explanation for the effects of drag reduction and lift force increasing, which have been reported in experiments of plasma assisted Aerodynamics.
Resumo:
This work describes an optical device for the simultaneous recording of shadowgrams and schlieren images, and some results are presented concerning its application to the study of plasma assisted flow control in airfoil models. This approach offers many advantages in comparison to other methods, specially because the use of tracer particles (like smoke in wind tunnels) is not required for the experiments, thus avoiding contaminations in the electric discharges or air flows. Besides, while schlieren images reveal the refractive index gradients in the area of study, shadowgrams detect the second order spatial derivatives of the refractive indexes. Therefore, the simultaneous recording of these different images may give interesting information about the phenomena under study.
Resumo:
Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Shape memory alloys (SMAs) provide a compact and effective actuation for a variety of mechanical systems. In this paper, a numerical simulation study of a three degree of-freedom airfoil, subjected to two-dimensional incompressible inviscid flow using a SMA is presented. SMA wire actuators are used to control the flap movement of a wing section. Through the thermo-mechanical constitutive equation of the SMA proposed by Brison, we simulate numerically the behavior of a double SMA wire actuator. Two SMA actuators are used: one to move the flap down and the other to move the flap up. Through the numerical results conducted in the present study, the behavior and characteristics of an SMA actuator with two SMA wires are shown the effectiveness of the SMA actuator. In conclusion, this paper shows the feasibility of using SMA wire actuators for flap movement, with success
Resumo:
With the advancement of computer technology and the availability of technology computer aided design (CAD) errors in the designs are getting smaller. To this end the project aims to assess the reliability of the machine (CNC), which was designed by students of mechanical engineering college engineering - UNESP Bauru, by designing, modeling, simulation and machining an airfoil automotive. The profile template selected for the study will be a NACA 0012 machined plates in medium density fiberboard (MDF) and will be performed with a structural analysis simulation using finite elements and a software CFD (Computational Fluid Dynamics), and test the real scale model in a wind tunnel. The results obtained in the wind tunnel and CFD software will be compared to see the error in the machining process.
Resumo:
Different representations for a control surface freeplay nonlinearity in a three degree of freedom aeroelastic system are assessed. These are the discontinuous, polynomial and hyperbolic tangent representations. The Duhamel formulation is used to model the aerodynamic loads. Assessment of the validity of these representations is performed through comparison with previous experimental observations. The results show that the instability and nonlinear response characteristics are accurately predicted when using the discontinuous and hyperbolic tangent representations. On the other hand, the polynomial representation fails to predict chaotic motions observed in the experiments. (c) 2012 Elsevier Ltd. All rights reserved.