797 resultados para Agent-based model
Resumo:
This paper argues about the utility of advanced knowledge-based techniques to develop web-based applications that help consumers in finding products within marketplaces in e-commerce. In particular, we describe the idea of model-based approach to develop a shopping agent that dynamically configures a product according to the needs and preferences of customers. Finally, the paper summarizes the advantages provided by this approach.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
Lock-in is observed in real world markets of experience goods; experience goods are goods whose characteristics are difficult to determine in advance, but ascertained upon consumption. We create an agent-based simulation of consumers choosing between two experience goods available in a virtual market. We model consumers in a grid representing the spatial network of the consumers. Utilising simple assumptions, including identical distributions of product experience and consumers having a degree of follower tendency, we explore the dynamics of the model through simulations. We conduct simulations to create a lock-in before testing several hypotheses upon how to break an existing lock-in; these include the effect of advertising and free give-away. Our experiments show that the key to successfully breaking a lock-in required the creation of regions in a consumer population. Regions arise due to the degree of local conformity between agents within the regions, which spread throughout the population when a mildly superior competitor was available. These regions may be likened to a niche in a market, which gains in popularity to transition into the mainstream.
Resumo:
This study is about the comparison of simulation techniques between Discrete Event Simulation (DES) and Agent Based Simulation (ABS). DES is one of the best-known types of simulation techniques in Operational Research. Recently, there has been an emergence of another technique, namely ABS. One of the qualities of ABS is that it helps to gain a better understanding of complex systems that involve the interaction of people with their environment as it allows to model concepts like autonomy and pro-activeness which are important attributes to consider. Although there is a lot of literature relating to DES and ABS, we have found none that focuses on exploring the capability of both in tackling the human behaviour issues which relates to queuing time and customer satisfaction in the retail sector. Therefore, the objective of this study is to identify empirically the differences between these simulation techniques by stimulating the potential economic benefits of introducing new policies in a department store. To apply the new strategy, the behaviour of consumers in a retail store will be modelled using the DES and ABS approach and the results will be compared. We aim to understand which simulation technique is better suited to human behaviour modelling by investigating the capability of both techniques in predicting the best solution for an organisation in using management practices. Our main concern is to maximise customer satisfaction, for example by minimising their waiting times for the different services provided.
Resumo:
Agent-based modelling and simulation offers a new and exciting way of understanding the world of work. In this paper we describe the development of an agent-based simulation model, designed to help to understand the relationship between human resource management practices and retail productivity. We report on the current development of our simulation model which includes new features concerning the evolution of customers over time. To test some of these features we have conducted a series of experiments dealing with customer pool sizes, standard and noise reduction modes, and the spread of the word of mouth. Our multidisciplinary research team draws upon expertise from work psychologists and computer scientists. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents offer potential for fostering sustainable organisational capabilities in the future.
Resumo:
In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methods. In a second step a multi-scenario experiment was carried out to study the behaviour of the models when they are used for the purpose of operational improvement. Overall we have found that for our case study example both, discrete event simulation and agent based simulation have the same potential to support the investigation into the efficiency of implementing new management policies.
Resumo:
Macro and micro-economic perspectives are combined in an eco- nomic growth model. An agent-based modeling approach is used to develop an overlapping generation framework where endogenous growth is supported by work- ers that decide to study depending on their relative (skilled and unskilled) indi- vidual satisfaction. The micro perspective is based on individual satisfaction: an utility function computed from the variation of the relative income in both space and time. The macro perspective emerges from micro decisions, and, as in other growth models of this type, concerns an important allocative social decision the share of the working population that is engaged in producing ideas (skilled work- ers). Simulations show that production and satisfaction levels are higher when the evolution of income measured in both space and time are equally weighted.
Resumo:
This paper explores the role of information and communication technologies in managing risk and early discharge patients, and suggests innovative actions in the area of E-Health services. Treatments of chronic illnesses, or treatments of special needs such as cardiovascular diseases, are conducted in long-stay hospitals, and in some cases, in the homes of patients with a follow-up from primary care centre. The evolution of this model is following a clear trend: trying to reduce the time and the number of visits by patients to health centres and derive tasks, so far as possible, toward outpatient care. Also the number of Early Discharge Patients (EDP) is growing, thus permiting a saving in the resources of the care center. The adequacy of agent and mobile technologies is assessed in light of the particular requirements of health care applications. A software system architecture is outlined and discussed. The major contributions are: first, the conceptualization of multiple mobile and desktop devices as part of a single distributed computing system where software agents are being executed and interact from their remote locations. Second, the use of distributed decision making in multiagent systems, as a means to integrate remote evidence and knowledge obtained from data that is being collected and/or processed by distributed devices. The system will be applied to patients with cardiovascular or Chronic Obstructive Pulmonary Diseases (COPD) as well as to ambulatory surgery patients. The proposed system will allow to transmit the patient's location and some information about his/her illness to the hospital or care centre
Resumo:
Numerous tools and techniques have been developed to eliminate or reduce waste and carry out lean concepts in the manufacturing environment. However, appropriate lean tools need to be selected and implemented in order to fulfil the manufacturer needs within their budgetary constraints. As a result, it is important to identify manufacturer needs and implement only those tools, which contribute maximum benefit to their needs. In this research a mathematical model is proposed for maximising the perceived value of manufacturer needs and developed a step-by-step methodology to select best performance metrics along with appropriate lean strategies within the budgetary constraints. With the help of a case study, the proposed model and method have been demonstrated.
Resumo:
Hybrid system representations have been exploited in a number of challenging modelling situations, including situations where the original nonlinear dynamics are too complex (or too imprecisely known) to be directly filtered. Unfortunately, the question of how to best design suitable hybrid system models has not yet been fully addressed, particularly in the situations involving model uncertainty. This paper proposes a novel joint state-measurement relative entropy rate based approach for design of hybrid system filters in the presence of (parameterised) model uncertainty. We also present a design approach suitable for suboptimal hybrid system filters. The benefits of our proposed approaches are illustrated through design examples and simulation studies.