996 resultados para Agent diffusion
Resumo:
In this paper, A Riesz fractional diffusion equation with a nonlinear source term (RFDE-NST) is considered. This equation is commonly used to model the growth and spreading of biological species. According to the equivalent of the Riemann-Liouville(R-L) and Gr¨unwald-Letnikov(GL) fractional derivative definitions, an implicit difference approximation (IFDA) for the RFDE-NST is derived. We prove the IFDA is unconditionally stable and convergent. In order to evaluate the efficiency of the IFDA, a comparison with a fractional method of lines (FMOL) is used. Finally, two numerical examples are presented to show that the numerical results are in good agreement with our theoretical analysis.
Resumo:
In this paper, we consider a time-space fractional diffusion equation of distributed order (TSFDEDO). The TSFDEDO is obtained from the standard advection-dispersion equation by replacing the first-order time derivative by the Caputo fractional derivative of order α∈(0,1], the first-order and second-order space derivatives by the Riesz fractional derivatives of orders β 1∈(0,1) and β 2∈(1,2], respectively. We derive the fundamental solution for the TSFDEDO with an initial condition (TSFDEDO-IC). The fundamental solution can be interpreted as a spatial probability density function evolving in time. We also investigate a discrete random walk model based on an explicit finite difference approximation for the TSFDEDO-IC.
Resumo:
The load–frequency control (LFC) problem has been one of the major subjects in a power system. In practice, LFC systems use proportional–integral (PI) controllers. However since these controllers are designed using a linear model, the non-linearities of the system are not accounted for and they are incapable of gaining good dynamical performance for a wide range of operating conditions in a multi-area power system. A strategy for solving this problem because of the distributed nature of a multi-area power system is presented by using a multi-agent reinforcement learning (MARL) approach. It consists of two agents in each power area; the estimator agent provides the area control error (ACE) signal based on the frequency bias estimation and the controller agent uses reinforcement learning to control the power system in which genetic algorithm optimisation is used to tune its parameters. This method does not depend on any knowledge of the system and it admits considerable flexibility in defining the control objective. Also, by finding the ACE signal based on the frequency bias estimation the LFC performance is improved and by using the MARL parallel, computation is realised, leading to a high degree of scalability. Here, to illustrate the accuracy of the proposed approach, a three-area power system example is given with two scenarios.
Resumo:
A new steady state method for determination of the electron diffusion length in dye-sensitized solar cells (DSCs) is described and illustrated with data obtained using cells containing three different types of electrolyte. The method is based on using near-IR absorbance methods to establish pairs of illumination intensity for which the total number of trapped electrons is the same at open circuit (where all electrons are lost by interfacial electron transfer) as at short circuit (where the majority of electrons are collected at the contact). Electron diffusion length values obtained by this method are compared with values derived by intensity modulated methods and by impedance measurements under illumination. The results indicate that the values of electron diffusion length derived from the steady state measurements are consistently lower than the values obtained by the non steady-state methods. For all three electrolytes used in the study, the electron diffusion length was sufficiently high to guarantee electron collection efficiencies greater than 90%. Measurement of the trap distributions by near-IR absorption confirmed earlier observations of much higher electron trap densities for electrolytes containing Li+ ions. It is suggested that the electron trap distributions may not be intrinsic properties of the TiO2 nanoparticles, but may be associated with electron-ion interactions.
Resumo:
The technological environment in which Australian SMEs operate can be best described as dynamic and vital. The rate of technological change provides the SME owner/manager a complex and challenging operational context. Wireless applications are being developed that provide mobile devices with Internet content and e-business services. In Australia the adoption of e-commerce by large organisations has been relatively high, however the same cannot be said for SMEs where adoption has been slower than other developed countries. In contrast however mobile telephone adoption and diffusion is relatively high by SMEs. This exploratory study identifies attitudes, perceptions and issues for mobile data technologies by regional SME owner/managers across a range of industry sectors. The major issues include the sector the firm belongs to, the current adoption status of the firm, the level of mistrust of the IT industry, the cost of the technologies and the applications and attributes of the technologies.
Resumo:
The aim of this paper is to contribute to the understanding of various models used in research for the adoption and diffusion of information technology in small and medium-sized enterprises (SMEs). Starting with Rogers' diffusion theory and behavioural models, technology adoption models used in IS research are discussed. Empirical research has shown that the reasons why firms choose to adopt or not adopt technology is dependent on a number of factors. These factors can be categorised as owner/manager characteristics, firm characteristics and other characteristics. The existing models explaining IS diffusion and adoption by SMEs overlap and complement each other. This paper reviews the existing literature and proposes a comprehensive model which includes the whole array of variables from earlier models.
Resumo:
The technological environment in which contemporary small- and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters, and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall, the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices; communication, e-commerce and security
Resumo:
An adaptive agent improves its performance by learning from experience. This paper describes an approach to adaptation based on modelling dynamic elements of the environment in order to make predictions of likely future state. This approach is akin to an elite sports player being able to “read the play”, allowing for decisions to be made based on predictions of likely future outcomes. Modelling of the agent‟s likely future state is performed using Markov Chains and a technique called “Motion and Occupancy Grids”. The experiments in this paper compare the performance of the planning system with and without the use of this predictive model. The results of the study demonstrate a surprising decrease in performance when using the predictions of agent occupancy. The results are derived from statistical analysis of the agent‟s performance in a high fidelity simulation of a world leading real robot soccer team.
Resumo:
Emerging evidence supports that prostate cancer originates from a rare sub-population of cells, namely prostate cancer stem cells (CSCs). Conventional therapies for prostate cancer are believed to mainly target the majority of differentiated tumor cells but spare CSCs, which may account for the subsequent disease relapse after treatment. Therefore, successful elimination of CSCs may be an effective strategy to achieve complete remission from this disease. Gamma-tocotrienols (-T3) is one of the vitamin-E constituents which have been shown to have anticancer effects against a wide-range of human cancers. Recently, we have reported that -T3 treatment not only inhibits prostate cancer cell invasion but also sensitizes the cells to docetaxel-induced apoptosis, suggesting that -T3 may be an effective therapeutic agent against advanced stage prostate cancer. Here, we demonstrate for the first time that -T3 can down-regulate the expression of prostate CSC markers (CD133/CD44) in androgen independent (AI) prostate cancer cell lines (PC-3 & DU145), as evident from western blotting analysis. Meanwhile, the spheroid formation ability of the prostate cancer cells was significantly hampered by -T3 treatment. In addition, pre-treatment of PC-3 cells with -T3 was found to suppress tumor initiation ability of the cells. More importantly, while CD133-enriched PC-3 cells were highly resistant to docetaxel treatment, these cells were as sensitive to -T3 treatment as the CD133-depleted population. Our data suggest that -T3 may be an effective agent in targeting prostate CSCs, which may account for its anticancer and chemosensitizing effects reported in previous studies.