959 resultados para Ag-H-ZSM-5 catalyst


Relevância:

100.00% 100.00%

Publicador:

Resumo:

一种导向剂快读合成小晶粒ZSM-5分子筛的方法,主要包括导向剂制备、分子筛合成两步。第一步导向剂制备首先根据配料比将硅源与无离子水制成A溶液后将模板剂加入,在搅拌下再将由无机酸碱调节适当碱度的铝源滴入均匀反应,按趁虚升温完成后,将合成液体中接近透明的部分分离出即为导向剂。分子筛的合成过程同导向剂相同,只是将原料配比中的有机胺模板剂由导向剂取代,晶化过程需65-75小时即可完成,得到平均粒径0.1μm的ZSM5分子筛。本发明制备简单,合成周期短。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new photoluminescent heterobimetallic Zn(II)-Ag(I) cyano-bridged coordination polymer, [Ag5Zn2(tren)(2)(CN)(9)] (tren = tris(2-aminoethyl)amine) (1), has been synthesized and structurally characterized. It features rare linear pentameric unit of dicyanoargentate(I) ions assembled by d(10)-d(10) interaction as building blocks. Solid state emission spectrum of I shows strong ultraviolet luminescence with emission peak in the range of 376 nm.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microwave effects have been shown to promote the activation of NOx molecules in the process of selective reduction of NO by CH4 over an In-Fe2O3/HZSM-5 catalyst and to enhance the water tolerance of this catalyst for NO reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A kinetic model presented for the selective reduction of NO with CH4 over an InFe2O3/HZSM-5 catalyst by considering the process as a combination of two simultaneous reactions: NO+O2CH4 (reaction 1) and O-2+CH4 (reaction 2). Linear regression calculation was employed to find the kinetic parameters. It was found that although the activation energies of the two reactions were almost identical, the reaction rate constants were dramatically different, namely, k(1)much greater than k(2), indicating that the NO+O-2+CH4 reaction was more preferable to take place on the In-Fe2O3/HZSM-5 catalyst as compared with the O-2+CH4 reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of ZnO or ZrO2 into CuO/HZSM-5 was investigated for DME synthesis from syngas by using the reactive frontal chromatography method, TPR and in situ TPR. These promoters enhanced the catalytic activity of Cu/HZSM-5 and promotion with ZnO and ZrO2 produced a maximum activity, which could be explained by the improvement of the dispersion of Cu and the promotion of CuO reduction. The Cu+ species existing during the reaction have been detected, based on which a Cu-0 <-> Cu+1 redox cycle model was put forward.