911 resultados para Adult Human Hippocampus
Resumo:
Neuropsin is a secreted-type serine protease involved in learning and memory. The type II splice form of neuropsin is abundantly expressed in the human brain but not in the mouse brain. We sequenced the type II-spliced region of neuropsin gene in humans and representative nonhuman primate species. Our comparative sequence analysis showed that only the hominoid species (humans and apes) have the intact open reading frame of the type II splice form, indicating that the type II neuropsin originated recently in the primate lineage about 18 MYA. Expression analysis using RT-PCR detected abundant expression of the type II form in the frontal lobe of the adult human brain, but no expression was detected in the brains of lesser apes and Old World monkeys, indicating that the type II form of neuropsin only became functional in recent time, and it might contribute to the progressive change of cognitive abilities during primate evolution.
Resumo:
The proximate composition, amino acid composition and the PER values of Rohu (Labeo rohita), Mrigal (Cirrhina mrigala) and Calbasu (Labeo calbasu) are reported. The proximate composition of all the three fishes was similar. However the amino acid composition varied considerably. Protein quality index of the three fish proteins calculated from the amino acid composition are also reported. The nutritional quality of the 3 types of proteins to meet the growth requirements of infants, children and adult human beings is discussed. The possibility of substantial improvement in nutritional quality of the three fish proteins to suit the requirements of infants and children by marginal supplementation with valine/valine-rich food for rohu and valine and isoleucine/food rich in valine and isoleucine for mrigal and calbasu is also discussed. The results indicate that of the three fishes rohu is the best in protein quality followed by mrigal and calbasu. All of them have a better amino acid make up than casein to meet the amino acid requirement of adults.
Resumo:
Recent evidence suggests that the sympathetic nervous system may have a role in modulating neurogenic inflammation and bone remodelling. Neuropeptide Y (NPY) is a well-characterized neuropeptide transmitter in the peripheral sympathetic nervous system. NPY is known to be present in human dental pulp; however, quantitative data on NPY levels in pulpal health and disease in an adult population remain to be determined. The aims of the current study were to assess, quantitatively, NPY levels by radioimmunoassay and confirm the distribution of NPY fibres by immunocytochemistry in carious and non-carious adult human pulp tissue. Our results suggest changes in the levels and distribution of NPY in human dental pulp during the caries process, with significantly higher levels of NPY in carious compared with non-carious adult human teeth. Within the carious samples studied, our finding, that NPY levels were significantly elevated in mild/moderate caries, concurs with the hypothesis that NPY could have a modulatory role in pulpal inflammation and in reparative dentine formation. © 2006 Eur J Oral Sci.
Resumo:
There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula in mol% P2O5 (50)-CaO (50-X)-Na2O (X), where X was either 2, 4, 6, 8 or 10 were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion, proliferation and increased cell death in both cell types studied. There was no significant difference in %cell death between the PBGs which was significantly greater than the controls. However, compared to other PBGs, a greater number of cells was found on the 48 mol% CaO which may have been due to either increased adherence, proliferation or both. This composition was capable of supporting osteogenic proliferation and early differentiation and supports the notion that chemical modification of the glass could to lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.
Resumo:
Reaching to interact with an object requires a compromise between the speed of the limb movement and the required end-point accuracy. The time it takes one hand to move to a target in a simple aiming task can be predicted reliably from Fitts' law, which states that movement time is a function of a combined measure of amplitude and accuracy constraints (the index of difficulty, ID). It has been assumed previously that Fitts' law is violated in bimanual aiming movements to targets of unequal ID. We present data from two experiments to show that this assumption is incorrect: if the attention demands of a bimanual aiming task are constant then the movements are well described by a Fitts' law relationship. Movement time therefore depends not only on ID but on other task conditions, which is a basic feature of Fitts' law. In a third experiment we show that eye movements are an important determinant of the attention demands in a bimanual aiming task. The results from the third experiment extend the findings of the first two experiments and show that bimanual aiming often relies on the strategic co-ordination of separate actions into a seamless behaviour. A number of the task specific strategies employed by the adult human nervous system were elucidated in the third experiment. The general strategic pattern observed in the hand trajectories was reflected by the pattern of eye movements recorded during the experiment. The results from all three experiments demonstrate that eye movements must be considered as an important constraint in bimanual aiming tasks.
Resumo:
The motor points of the skeletal muscles, mainly of interest to anatomists and physiologists, have recently attracted much attention from researchers in the field of functional electrical stimulation. The muscle motor point has been defined as the entry point of the motor nerve branch into the epimysium of the muscle belly. Anatomists have pointed out that many muscles in the limbs have multiple motor points. Knowledge of the location of nerve branches and terminal nerve entry points facilitates the exact insertion and the suitable selection of the number of electrodes required for each muscle for functional electrical stimulation. The present work therefore aimed to describe the number, location, and distribution of motor points in the human forearm muscles to obtain optimal hand function in many clinical situations. Twenty three adult human cadaveric forearms were dissected. The numbers of primary nerves and motor points for each muscle were tabulated. The mean numbers and the standard deviation were calculated and grouped in tables. Data analyses were performed with the use of a statistical analysis package (SPSS 13.0). The proximal third of the muscle was the usual part of the muscle that received the motor points. Most of the forearm muscles were innervated from the lateral side and deep surface of the muscle. The information in this study may also be usefully applied in selective denervation procedures to balance muscles in spastic upper limbs. Copyright © 2007 Via Medica.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Recent evidence from animal and adult human subjects has demonstrated potential benefits to cognition from flavonoid supplementation. This study aimed to investigate whether these cognitive benefits extended to a sample of school-aged children. Using a cross-over design, with a wash out of at least seven days between drinks, fourteen 8-10 year old children consumed either a flavonoid-rich blueberry drink or matched vehicle. Two hours after consumption, subjects completed a battery of five cognitive tests comprising the Go-NoGo, Stroop, Rey’s Auditory Verbal Learning Task, Object Location Task, and a Visual N-back. In comparison to vehicle, the blueberry drink produced significant improvements in the delayed recall of a previously learned list of words, showing for the first time a cognitive benefit for acute flavonoid intervention in children. However, performance on a measure of proactive interference indicated that the blueberry intervention led to a greater negative impact of previously memorised words on the encoding of a set of new words. There was no benefit of our blueberry intervention for measures of attention, response inhibition or visuo-spatial memory. While findings are mixed, the improvements in delayed recall found in this pilot study suggest that, following acute flavonoid-rich blueberry interventions, school aged children encode memory items more effectively.
Resumo:
Neural precursor cells (NPCs) are lineage-restricted neural stem cells with limited self-renewal, giving rise to a broad range of neural cell types such as neurons, astrocytes, and oligodendrocytes. Despite this developmental potential, the differentiation capacity of NPCs has been controversially discussed concerning the trespassing lineage boundaries, for instance resulting in hematopoietic competence. Assessing their in vitro plasticity, we isolated nestin+/Sox2+, NPCs from the adult murine hippocampus. In vitro-expanded adult NPCs were able to form neurospheres, self-renew, and differentiate into neuronal, astrocytic, and oligodendrocytic cells. Although NPCs cultivated in early passage efficiently gave rise to neuronal cells in a directed differentiation assay, extensively cultivated NPCs revealed reduced potential for ectodermal differentiation. We further observed successful differentiation of long-term cultured NPCs into osteogenic and adipogenic cell types, suggesting that NPCs underwent a fate switch during culture. NPCs cultivated for more than 12 passages were aneuploid (abnormal chromosome numbers such as 70 chromosomes). Furthermore, they showed growth factor-independent proliferation, a hallmark of tumorigenic transformation. In conclusion, our findings substantiate the lineage restriction of NPCs from adult mammalian hippocampus. Prolonged cultivation results, however, in enhanced differentiation potential, which may be attributed to transformation events leading to aneuploid cells.
Resumo:
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition.
Resumo:
The combination of solid-phase microextraction (SPME) with comprehensive two-dimensional gas chromatography is evaluated here for fatty acid (FA) profiling of the glycerophospholipid fraction from human buccal mucosal cells. A base-catalyzed derivatization reaction selective for polar lipids such as glycerophospholipid was adopted. SPME is compared to a miniaturized liquidliquid extraction procedure for the isolation of FA methyl esters produced in the derivatization step. The limits of detection and limits of quantitation were calculated for each sample preparation method. Because of its lower values of limits of detection and quantitation, SPME was adopted. The extracted analytes were separated, detected, and quantified by comprehensive two-dimensional gas chromatography with flame ionization detection (FID). The combination of SPME and comprehensive two-dimensional gas chromatography with FID, using a selective derivatization reaction in the preliminary steps, proved to be a simple and fast procedure for FA profiling, and was successfully applied to the analysis of adult human buccal mucosal cells.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
372 osteochondrodysplasias and genetically determined dysostoses were reported in 2007 [Superti-Furga and Unger, 2007]. For 215 of these conditions, an association with one or more genes can be stated, while the molecular changes for the remaining syndromes remain illusive to date. Thus, the present dissertation aims at the identification of novel genes involved in processes regarding cartilage/ bone formation, growth, differentiation and homeostasis, which may serve as candidate genes for the above mentioned conditions. Two different approaches were undertaken. Firstly, a high throughput EST sequencing project from a human fetal cartilage library was performed to identify novel genes in early skeletal development (20th week of gestation until 2nd year of life) that could be investigated as potential candidate genes. 5000 EST sequences were generated and analyzed representing 1573 individual transcripts, corresponding to known (1400) and to novel, yet uncharacterized genes (173). About 7% of the proteins were already described in cartilage/ bone development or homeostasis, showing that the generated library is tissue specific. The remaining profile of this library was compared to previously published libraries from different time points (8th–12th, 18th–20th week and adult human cartilage) that also showed a similar distribution, reflecting the quality of the presented library analyzed. Furthermore, three potential candidate genes (LRRC59, CRELD2, ZNF577) were further investigated and their potential involvement in skeletogenesis was discussed. Secondly, a disease-orientated approach was undertaken to identify downstream targets of LMX1B, the gene causing Nail-Patella syndrome (NPS), and to investigate similar conditions. Like NPS, Genitopatellar syndrome (GPS) is characterized by aplasia or hypoplasia of the patella and renal anomalies. Therefore, six GPS patients were enrolled in a study to investigate the molecular changes responsible for this relatively rare disease. A 3.07 Mb deletion including LMX1B and NR5A1 (SF1) was found in one female patient that showed features of both NPS and GPS and investigations revealed a 46,XY karyotype and ovotestes indicating true hermaphroditism. The microdeletion was not seen in any of the five other patients with GPS features only, but a potential regulatory element between the two genes cannot be ruled out yet. Since Lmx1b is expressed in the dorsal limb bud and in podocytes, proteomic approaches and expression profiling were performed with murine material of the limbs and the kidneys to identify its downstream targets. After 2D-gel electrophoresis with protein extracts from E13.5 fore limb buds and newborn kidneys of Lmx1b wild type and knock-out mice and mass spectrometry analysis, only two proteins, agrin and carbonic anhydrase 2, remained of interest, but further analysis of the two genes did not show a transcriptional down regulation by Lmx1b. The focus was switched to expression profiles and RNA from newborn Lmx1b wild type and knock-out kidneys was compared by microarray analysis. Potential Lmx1b targets were almost impossible to study, because of the early death of Lmx1b deficient mice, when the glomeruli, containing podocytes, are still immature. Because Lmx1b is also expressed during limb development, RNA from wild type and knock-out Lmx1b E11.5 fore limb buds was investigated by microarray, revealing four potential Lmx1b downstream targets: neuropilin 2, single-stranded DNA binding protein 2, peroxisome proliferative activated receptor, gamma, co-activator 1 alpha, and short stature homeobox 2. Whole mount in situ hybridization strengthened a potential down regulation of neuropilin 2 by Lmx1b, but further investigations including in situ hybridization and protein-protein interaction studies will be needed.
Resumo:
Computed tomography (CT) and magnetic resonance (MR) imaging have become important elements of forensic radiology. Whereas the feasibility and potential of CT angiography have long been explored, postmortem MR angiography (PMMRA) has so far been neglected. We tested the feasibility of PMMRA on four adult human cadavers. Technical quality of PMMRA was assessed relative to postmortem CT angiography (PMCTA), separately for each body region. Intra-aortic contrast volumes were calculated on PMCTA and PMMRA with segmentation software. The results showed that technical quality of PMMRA images was equal to PMCTA in 4/4 cases for the head, the heart, and the chest, and in 3/4 cases for the abdomen, and the pelvis. There was a mean decrease in intra-aortic contrast volume from PMCTA to PMMRA of 46%. PMMRA is technically feasible and allows combining the soft tissue detail provided by MR and the information afforded by angiography.