929 resultados para Acid-base
Resumo:
The present work provides a regional-scale assessment of the changes in acidifying deposition in Finland over the past 30 years and the current pattern in the recovery of acid-sensitive lakes from acidification in relation to changes in sulphate deposition. This information is needed for documenting the ecosystem benefits of costly emission reduction policies and further actions in air pollution policy. The development of sulphate deposition in Finland reflects that of European SO2 emissions. Before the 1990s, reductions in sulphur emissions in Europe had been relatively small and sulphate deposition showed no consistent trends. Due to emission reduction measures that were then taken, sulphate deposition started to clearly decline from the late 1980s. The bulk deposition of sulphate has declined 40-60% in most parts of the country during 1990-2003. The decline in sulphate deposition exceeded the decline of base cation deposition, which resulted in a decrease in acidity and acidifying potential of deposition over the 1990s. Nitrogen deposition also decreased since the late 1980s, but less than that of sulphate, and levelling off during the 1990s. Sulphate concentrations in all types of small lakes throughout Finland have declined from the early 1990s. The relative decrease in lake sulphate concentrations (average 40-50%) during 1990-2003 was rather similar to the decline in sulphate deposition, indicating a direct response to the reduction in deposition. There are presently no indications of elevated nitrate concentrations in forested headwater lakes. Base cation concentrations are still declining in many lakes, especially in south Finland, but to a lesser extent than sulphate allowing buffering capacity (alkalinity) to increase, being significant in 60% of the study lakes. Chemical recovery is resulting in biological recovery with populations of acid-sensitive fish species increasing. The recovery has been strongest in lakes in which sulphate has been the major acidifying agent, and recovery has been the strongest and most consistent in lakes in south Finland. The recovery of lakes in central Finland and north Finland is not as widespread and strong as observed in south. Many catchments, particularly in central Finland, have a high proportion of peatlands and therefore high TOC concentrations in lakes, and runoff-induced surges of organic acids have been an important confounding factor suppressing the recovery of pH and alkalinity in these lakes. Chemical recovery is progressing even in the most acidified lakes, but the buffering capacity of many lakes is still low and still sensitive to acidic input. Further reduction in sulphur emissions are needed for the alkalinity to increase in the acidified lakes. Increasing total organic carbon (TOC) concentrations are indicated in small forest lakes in Finland. The trends appear to be related to decreasing sulphate deposition and improved acid-base status of the soil, and the rise in TOC is integral to recovery from acidification. A new challenge is climate change with potential trends in temperature, precipitation and runoff, which are expected to affect future chemical and biological recovery from acidification. The potential impact on the mobilization and leaching of organic acids may become particularly important in Finnish conditions. Long-term environmental monitoring has evidently shown the success of international emission abatement strategies. The importance and value of integrated monitoring approach including physical, chemical and biological variables is clearly indicated, and continuous environmental monitoring is needed as a scientific basis for further actions in air pollution policy.
Resumo:
1. The polarographic behaviour of amino-acid complexes of zinc has been studied using seven amino acids as complexing agents. 2. The effect of varying the pH of the base solution and the concentration of amino-acid anion on the polarographic behaviour of zinc in these solutions have indi cated the formation of twelve amino-acid complexes. The stability constants could not be calculated due to the irreversible nature of the waves. 3. The effect of sodium hydroxide, sodium carbonate, and ammonia on the polarographic behaviour of zinc has been investigated. The results can be interpreted as due to the formation of mixed complexes in many systems. 4. Amino-acid base solutions have been found to be suitable for the polarographic estimation of zinc.
Resumo:
The effect of acid/base functional-groups associated with platinized-carbon electrodes on their catalytic activity toward electro-oxidation of methanol in sulfuric acid electrolyte at 60-degrees-C is studied. Platinized-carbon electrodes with sm amounts of functional groups exhibit higher catalytic activity compared to those with large concentrations of acidic/basic surface functionalities. The overpotential for methanol oxidation is minimum on electrodes of platinized carbons with pHzpc values between 6 and 7. An x-ray photoelectron spectroscopic study of various platinized carbons suggests that the acid/base surface functional-groups produce ample amounts of surface Pt-oxides and a consequent decrease in activity toward methanol oxidation.
Resumo:
Attempts to prepare hydrogen-bond-directed nonlinear optical materials from a 1:1 molar mixture Of D-(+)-dibenzoyltartaric acid (DBT, I) and 4-aminopyridine (4-AP, II) resulted in two salts of different stoichiometry. One of them crystallizes in an unusual 1.5:1 (acid:base) monohydrate salt form III while the other one crystallizes as 1:1 (acid:base) salt IV. Crystal structures of both of the salts were determined from single-crystal X-ray diffraction data. The salt III crystallizes in a monoclinic space group C2 with a = 30.339(l), b = 7.881(2), c = 14.355(1) angstrom, beta = 97.48(1)degrees, V = 3403.1(9) angstrom3, Z = 4, R(w) = 0.058, R(w)= 0.058. The salt IV also crystallizes in a monoclinic space group P2(1) with a = 7.500(1), b = 14.968(2), c = 10.370(1) angstrom, beta = 102.67(1)degrees, V = 1135.9(2) angstrom3, Z = 2, R = 0.043, R(w) = 0.043. Interestingly, two DBT molecules with distinctly different conformation are present in the same crystal lattice of salt III. Extensive hydrogen-bonding interactions are found in both of the salts, and both of them show SHG intensity 1.4-1.6 times that of urea.
Resumo:
An organic supramolecular ternary salt (gallic acid:isoniazid:water; GINZH) examined earlier for its proton conducting characteristics is observed to display step-like dielectric behavior across the structural phase transition mediated by loss of water of hydration at 389 K. The presence of hydration in the crystal lattice along with proton mobility between acid base pairs controls the ``ferroelectric like'' behavior until the phase transition temperature.
Resumo:
A crescente preocupação com a preservação do meio ambiente aliada às perspectivas de esgotamento das fontes de energia obtidas dos combustíveis fósseis tem impulsionado a indústria a desenvolver combustíveis alternativos a partir de recursos renováveis e processos ambientalmente não agressivos. O biodiesel, uma mistura de ésteres de ácidos graxos obtida pela transesterificação catalítica de óleos vegetais com álcoois de cadeia curta (metanol ou etanol) é um combustível alternativo importante, pelo fato das suas propriedades (índice de cetano, conteúdo energético e viscosidade) serem similares às do diesel obtido a partir do petróleo. No presente trabalho, a transesterificação do óleo de soja com metanol para a produção de biodiesel foi estudada em presença de catalisadores sólidos à base de Mg/La e Al/La com propriedades ácido-básicas. Catalisadores de Mg/La com uma relação molar Mg/La igual a 9:1 foram preparados por coprecipitação utilizando três métodos que se diferenciavam quanto ao tipo de agente precipitante e a temperatura de calcinação. O catalisador preparado com (NH4)2CO3/NH4OH como agente precipitante e calcinado a 450 C apresentou as melhores características físico-químicas e catalíticas. Catalisadores à base de Mg/La e Al/La com diferentes composições químicas foram sintetizados nas condições de preparo selecionadas. O comportamento catalítico destes materiais foi investigado frente à reação de transesterificação do óleo de soja com metanol. O catalisador de Al/La com uma relação molar Al/La igual a 9:1 mostrou o melhor desempenho catalítico (rendimento em ésteres metílicos igual a 84 % a 180 C) e pode ser reutilizado por pelo menos três ciclos de reação. Também foram realizados testes catalíticos na presença do óleo de soja com 10 % de ácido oleico verificando-se que os catalisadores utilizados possuem sítios capazes de catalisar as reações de transesterificação e esterificação
Resumo:
Antifungal compounds produced by Lactic acid bacteria (LAB) metabolites can be natural and reliable alternative for reducing fungal infections pre- and post-harvest with a multitude of additional advantages for cereal-base products. Toxigenic and spoilage fungi are responsible for numerous diseases and economic losses. This thesis includes an overview of the impact fungi have on aspects of the cereal food chain. The applicability of LAB in plant protection and cereal industry is discussed in detail. Specific case studies include Fusarium head blight, and the impact of fungi in the malting and baking industry. The impact of Fusarium culmorum infected raw barley on the final malt quality was part of the investigation. In vitro infected barley grains were fully characterized. The study showed that the germinative energy of infected barley grains decreased by 45% and grains accumulated 199 μg.kg-1 of deoxynivalenol (DON). Barley grains were subsequently malted and fully characterized. Fungal biomass increased during all stages of malting. Infected malt accumulated 8-times its DON concentration during malting. Infected malt grains revealed extreme structural changes due to proteolytic, (hemi)-cellulolytic and starch degrading activity of the fungi, this led to increased friability and fragmentation. Infected grains also had higher protease and β-glucanase activities, lower amylase activity, a greater proportion of free amino and soluble nitrogen, and a lower β-glucan content. Malt loss was over 27% higher in infected malt when compared to the control. The protein compositional changes and respective enzymatic activity of infected barley and respective malt were characterized using a wide range of methods. F. culmorum infected barley grains showed an increase in proteolytic activity and protein extractability. Several metabolic proteins decreased and increased at different rates during infection and malting, showing a complex F. culmorum infection interdependence. In vitro F. culmorum infected malt was used to produce lager beer to investigate changes caused by the fungi during the brewing processes and their effect on beer quality attributes. It was found, that the wort containing infected malt had a lower pH, a higher FAN, higher β-glucan and a 45% increase in the purging rate, and led to premature yeast flocculation. The beer produced with infected malt (IB) had also a significantly different amino acid profile. IB flavour characterization revealed a higher concentration of esters, fusel alcohols, fatty acids, ketones, and dimethylsulfide, and in particular, acetaldehyde, when compared to the control. IB had a greater proportion of Strecker aldehydes and Maillard products contributing to an increased beer staling character. IB resulted in a 67% darker colour with a trend to better foam stability. It was also found that 78% of the accumulated mycotoxin deoxynivalenol in the malt was transferred into beer. A LAB cell-freesupernatant (cfs), produced in wort-base substrate, was investigated for its ability to inhibit Fusarium growth during malting. Wort was a suitable substrate for LAB exhibiting antifungal activity. Lactobacillus amylovorus DSM19280 inhibited 104 spores.mL-1 for 7 days, after 120 h of fermentation, while Lactobacillus reuteri R29 inhibited 105 spores.mL-1 for 7 days, after 48 h of fermentation. Both LAB cfs had significant different organic acid profiles. Acid-base antifungal compounds were identified and, phenyllactic, hydroxy-phenyllactic, and benzoic acids were present in higher concentrations when compared to the control. A 3 °P wort substrate inoculated With L. reuteri R29 (cfs) was applied in malting and successfully inhibited Fusarium growth by 23%, and mycotoxin DON by 80%. Malt attributes resulted in highly modified grains, lower pH, higher colouration, and higher extract yield. The implementation of selected LAB producing antifungal compounds can be used successfully in the malting process to reduce mould growth and mycotoxin production.
Resumo:
Introducción: La hemorragia digestiva (HVDA) es la principal causa de descompensación en pacientes con cirrosis. Caracterizar el estado ácido-base de estos pacientes sería útil para reflejar la severidad del sangrado e identificar pacientes con alto riesgo de complicación. Objetivo: Describir el estado ácido-base de los pacientes que consultaron a urgencias con cirrosis descompensada por HVDA y posteriormente fueron manejados en la unidad de cuidado intensivo (UCI) o fallecieron. Métodos: Se realizó el análisis del estado ácido-base a 10 pacientes con estas características, utilizando tres métodos distintos. Resultados: El perfil ácido-base encontrado fue: acidosis metabólica por iones no medidos, acidosis láctica, alcalosis por hipoalbuminemia y anión gap elevado en la mayoría de pacientes. Conclusiones: La teoría de Henderson-Hasselbach no fue suficiente para identificar pacientes con alto riesgo, debería implementarse concomitantemente el análisis anión gap, base déficit y el método físico–químico, para entender los fenómenos acido base de estos pacientes.
Resumo:
Introducción: Los pacientes con lesiones térmicas presentan alteraciones fisiológicas complejas que hacen difícil la caracterización del estado ácido-base y así mismo alteraciones electrolíticas e hipoalbuminemia que pudieran estar relacionados con un peor pronóstico. Se ha estudiado la base déficit (BD) y el lactato, encontrando una gran divergencia en los resultados. Por lo anterior, el análisis físico-químico del estado ácido-base podría tener un rendimiento superior a los métodos tradicionales. Metodología: Se realizó el análisis de una serie de casos de 15 pacientes mayores de 15 años, con superficie corporal quemada mayor al 20% que ingresaron a una unidad de cuidado intensivo (UCI) de quemados, dentro de las siguientes 48 horas del trauma. Para el análisis se utilizaron tres métodos distintos: 1) método convencional basado en la teoría de Henderson-Hasselbalch, 2) anión-gap (AG) y anión-gap corregido por albúmina, 3) análisis físico-químico del estado ácido-base según la teoría de Stewart modificado por Fencl y Figge. Resultados: Por el método de Henderson-Hasselbalch, 8 pacientes cursaron con acidosis metabólica, 4 pacientes con una BD leve, 5 pacientes con una BD moderada y 5 pacientes con una BD severa. El AG resultó menor a 16 mmol/dl en 10 pacientes, pero al corregirlo por albumina sólo 2 pacientes cursaron con AG normal. La diferencia de iones fuertes (DIF) se encontraba anormalmente elevada en la totalidad de los pacientes. Conclusión:El análisis del AG corregido por albumina y el análisis físico-químico del estado ácido-base, podrían tener mayor rendimiento al identificar las alteraciones metabólicas de estos pacientes.
Resumo:
Introducción: Los pacientes en postoperatorio de trasplante hepático presentan múltiples cambios hemodinámicos y alteraciones hidroelectrolíticas que generan cambios en el estado ácido base. El presente trabajo, busca describir el comportamiento ácido base en pacientes pos trasplante hepático, a través del análisis del modelo de Stewart, enfocado en la búsqueda etiológica de cada trastorno y planteando posibles formas de optimizar el manejo en Cuidado Intensivo (CI). Metodología: Estudio observacional, descriptivo histórico de los gases arteriales de los pacientes en post operatorio de trasplante hepático por cualquier causa, interpretados por método de Stewart. Se realizó con el universo de pacientes ingresados en el año 2014 en la Fundación Santa Fe de Bogotá. Resultados: Ingresaron en total 24 pacientes al estudio, entre el 1 de enero al 31 de septiembre de 2014. La mediana de pH fue de 7.36 con un valor mínimo de 7.05 y el máximo de 7.49. El 41% de los pacientes al ingreso a cuidado intensivo tenían lactato normal (menor a 2), y el 88% tenían niveles de albumina bajos. El trastorno electrolítico más común fue hipercloremia (58%), seguido de hipomagnesemia (25%). Conclusiones. El análisis de gases arteriales por el modelo de Stewart permite realizar un diagnóstico de un trastorno específico y adicionalmente, permite buscar la etiología del trastorno. Esta serie de casos mostró que el 95% de los pacientes tenían algún trastorno metabólico al ingreso, siendo el más frecuente la acidosis metabólica (66%).
Resumo:
Dissolved organic carbon (DOC) in acid-sensitive upland waters is dominated by allochthonous inputs from organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH-related retention of DOC in O horizon soils was influenced by acid-base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 μeq l−1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH-DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 μeq l−1), with the greatest decreases occurring in soils with very small % base saturation (BS, <3%) and/or large capacity for sulphate (SO42−) retention (up to 35% of added SO42−). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid-base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However,superimposed on this is the capacity of mineral soils to sorb DOC and SO42−, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42−.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Undergraduate students on the first year of Chemistry Courses are unfamiliar with the representation of acid-base reactions using the ionic equation H+ + OH- → H2O. A chemistry class was proposed about acid-base reactions using theory and experimental evaluation of neutralization heat to discuss the energy involved when water is formed from H+ and OH- ions. The experiment is suggested using different strong acids and strong base pairs. The presentation of the theme within a chemistry class for high school teachers increased the number of individuals that saw the acid-base reaction from this perspective.
Resumo:
Glass ionomer cements (GICs) are products of the acid-base setting reaction between an finely fluoro-alumino silicate glass powder and poly(acrylic acid) in aqueous solution. The sol gel method is an adequate route of preparation of the glasses used to obtain the GICs. The objective of this paper was to compare two powders: a commercial and an experimental and to investigate the structural changes during hardening of the cements by FTIR and Al MAS NMR. These analyses showed that the experimental glass powder reacted with organic acid to form the GICs and it is a promising material to manufacture dental cements.