1000 resultados para Acanthephyra pelagica
Resumo:
At Ocean Drilling Program Site 689 (Maud Rise, Southern Ocean), d18O records of fine-fraction bulk carbonate and benthic foraminifers indicate that accelerated climate cooling took place following at least two closely spaced early late Eocene extraterrestrial impact events. A simultaneous surface-water productivity increase, as interpreted from d13C data, is explained by enhanced water-column mixing due to increased latitudinal temperature gradients. These isotope data appear to be in concert with organic-walled dinoflagellate-cyst records across the same microkrystite-bearing impact-ejecta layer in the mid-latitude Massignano section (central Italy). In particular, the strong abundance increase of Thalassiphora pelagica is interpreted to indicate cooling or increased productivity at Massignano. Because impact-induced cooling processes are active on time scales of a few years at most, the estimated 100 k.y. duration of the cooling event appears to be too long to be explained by impact scenarios alone. This implies that a feedback mechanism, such as a global albedo increase due to extended snow and ice cover, may have sustained impact-induced cooling for a longer time after the impacts.
Resumo:
At Ocean Drilling Program (ODP) Leg 189 Sites 1170-1172, the climatologically critical Eocene-Oligocene (E-O) transition is barren of any calcareous microfossils but contains rich marine organic walled dinoflagellate cyst (dinocyst) and diatom assemblages, suitable for detailed biostratigraphic and paleoenvironmental analysis. The resulting first-ever integrated dinocyst/diatom magnetostratigraphy allows confident correlation of the E-O interval between all Leg 189 sites, including Site 1168. Our correlations indicate that the (deep) opening of the Tasmanian Gateway occurred quasi-synchronously throughout the Tasmanian region, starting at ~35.5 Ma. At Sites 1170-1172, quantitatively, three distinct dinocyst assemblages may be distinguished that reflect the relatively rapid and pronounced stepwise environmental changes associated with the E-O transition in the Tasmanian region, from a pro-deltaic setting to a deep marine pelagic setting. Moreover, synchronous with the deepening of the gateway, at the southern and eastern Sites 1170-1172, typical endemic Antarctic assemblages were replaced by more cosmopolitan dinocyst communities. In marked contrast, at Site 1168 off western Tasmania, endemic Antarctic taxa are virtually absent during the E-O transition. At Sites 1170-1172, the endemic Antarctic dinocyst assemblage (Transantarctic Flora) drastically changes into a more cosmopolitan assemblage at ~35.5 Ma, with a more offshore character, reflecting the arrival of different oceanographic and environmental conditions associated with the deepening of the Tasmanian Gateway. In turn, this assemblage grades at ~34 Ma into one more typical for even more offshore and/or upwelling conditions at Site 1172. In slightly younger deposits at all sites, organic microfossils are virtually absent, reflecting winnowing and oxidation, indicative of a next step of oceanographic development. This phase may be dated as close to the Oceanic Anoxic (Oi)-1 18O (Antarctic glaciation) event (~33.3 Ma). In a single productive sample from the earliest Oligocene the northern Site 1172, a relatively warm-water cosmopolitan assemblage has been recovered. This aspect contrasts findings from coeval deposits from the Ross Sea, where endemic Antarctic species remain dominant. Somewhere between the paleogeographic positions of Site 1172 and the Ross Sea, a strong differentiation of surface waters occurred in the earliest Oligocene, possibly reflecting the onset of the Antarctic Circumpolar Current.
Resumo:
Two box cores taken off Cape Barbas (North-West Africa) have been studied using three methods. The analyses of the coarse fraction, of biogenic opal and of planktonic foraminifera revealed : 1. Core GIK12310-4 penetrates Z, Y, X and upper part of W zone, whereas core GIK12379-1 penetrates Z and upper part of Y zone. 2. Holocene sedimentation rates are 2.5 cm/1000 y for core GIK12310-4 and 6.0 cm/1000 y for core GIK12379-1. During the Y zone 5 cm/l000 y were sedimented incore GIK12310-4 and > 10-20 cm/1000 y in core GIK12379-1. 3. Paleoclimatohgical results are: arid climate and relatively warm water temperatures during the Holocene (Z zone) and during X zone; humid climate and relatively cool water temperatures within the Wuerm (Y zone) (with a non-dated more arid interval found in the middle part of the Y zone) and in the upper part of the W zone. 4. Increased contents of benthos and radiolaria in the Y zone indicate upwelling. Upwelling, characterized by high content of biogenic opal and low water temperatures, was found in core GIK12310-4 at 250 to 350 cm in the lower part of the Y zone. The plankton/benthos ratio of foraminifera, the benthos/radiolaria ratio and water temperatures derived from planktonic foraminifera, differ in both cores in the Holocene, and are nearly identical during the Wuerm.
Resumo:
During the Indian Ocean Expedition of the German research vessel "Meteor" and the following cruise with the Pakistani fishing vessel "Machhera" in February and March 1965, sediments were sampled from the shelf, continental slope and the Arabian Basin off Pakistan and India. The biostratigraphic studies are based on sedimentary material from 24 sediment cores up to 480 cm long and 100 grab samples. The faunal residues of the > 160 µ fraction (chiefly foraminifera and pteropods) were determined and counted in order to get an idea of the climatic conditions during the Late Quaternary of this region. Biostratigraphic correlations of these Late Quaternary deposits are only possible if the thanatocoenosis of the surface sediments are well known. The analysis of the benthonic foraminiferal populations resulted in the definition of several foraminiferal facies. The following sequence of forarniniferal facies, named after their most characteristic members, can be distinguished from the shelf to the deep-sea: 1. Ammonia-Florilus facies ; 2. Ammonia-Cancris facies; 3. Cassidulina-Cibicides facies; 4. Uvigerina-Cassidulina facies ; 5. Buliminacea facies ; 6. deepwater facies, partly with Bulimina aculeata or with Nonionidae. On the upper continental slope there is a zone extremely poor in benthonic foraminifera. In this water depth the oxygen minimum layer (0.05-0.02 ml/l) of the water column reaches the slope. Almost no connection can be observed between the living and the dead foraminiferal population of the same sample. The regional distribution of the planktonic foraminifera from plankton tows as well as from the surface sediments shows marked differences in the species composition of faunas from different regions within the area of investigation. That depends on oceanographic conditions such as upwelling, dissolution of carbonate at great depths etc. Based on the results of faunal analysis of samples from the recent sea-floor, a biostratigraphic subdivision of the sediments in the cores was established. The following biostratigraphically defined sections could be distinguished from the top of the sediment cores downwards : 1. Relatively cool climatic conditions are reflected by the foraminifera of the uppermost core sections. 2. The next section is characterized by much warmer conditions (Holocene climatic optimum). The C-14 ages of this interval range from 4000 to 10 000 years B.P. according to different authors. C-14 dates on the material investigated do not give reliable clues. 3. Foraminiferal populations adapted to much colder conditions can be observed in the underlying core section. The boundary between the warm climate reflected by the foraminifera of section 2 and the cold climate (section 3) is relatively sharp. It can be correlated from core to core over the whole area investigated. The cold climate sediments of section 3 are underlain by different cool-, warm- and cold-climate sediments which can only be correlated over very short distances. Since it appears certain that the last really cold conditions ended earlier in the Arabian Sea and its vicinity than in Europe it is recommended not to use the European stratigraphic terms for the Quaternary. Because of the lack of reliable absolute sediment ages for the cores no exact sedimentation rates can be given. According to rough estimates, however, the rates are 1-2 cm/1000 years in the deep basin and up to 40 cm/1000 years on the upper continental slope. Sedimentation rates are always larger near the mouth of the Indus-River than off South India at stations of about the same water depth. Planktonic gastropods (mainly pteropods) cannot be used for biostratigraphic purposes in the region under consideration. All of them seem to be displaced from the shelf. Their distribution there is given in.