952 resultados para AQUEOUS 2-PHASE SYSTEMS
Resumo:
By the year 2005 the world biochemical market will reach an estimated $ 100 billion and separation processes are a vital link between lab discoveries and the fulfillment of this commercialization potential. The practical application of aqueous two-phase systems (ATPS) to extraction processes has been exploited for several years for the recovery of biological products. Unfortunately, this has not resulted in an extensive presence of the technique in commercial processes. In this paper a critical overview of the fundamental thermodynamic properties related to formation of aqueous two-phase systems and their application to extraction and purification of bioparticules is presented.
Resumo:
The restricted availability of water sources suitable for consumption and high costs for obtaining potable water has caused an increase of the conscience concerning the use. Thus, there is a high demand for "environmentally safe methods" which are according to the principles of Green Chemistry. Moreover, these methods should be able to provide reliable results for the analysis of water quality for various pollutants, such as phenol. In this work, greener alternatives for sample preparation for phenol determination in aqueous matrices are presented, which include: liquid phase microextraction, solid phase microextraction, flow analysis, cloud point extraction and aqueous two-phase systems.
Resumo:
The 21st Annual Biochemical Engineering Symposium was held at Colorado State University on April 20, 1991. The primary goals of this symposium series are to provide an opportunity for students to present and publish their research work and to promote informal discussions on biochemical engineering research. Contents High Density Fed-Batch Cultivation and Energy Metabolism of Bacillus thuringtensis; W.-M. Liu, V. Bihari, M. Starzak, and R.K. Bajpai Influences of Medium Composition and Cultivation Conditions on Recombinant Protein Production by Bacillus subtilis; K. Park, P.M. Linzmaier, and K.F. Reardon Characterization of a Foreign Gene Expression in a Recombinant T7 Expression System Infected with λ Phages; F. Miao and D.S. Kompala Simulation of an Enzymatic Membrane System with Forced Periodic Supply of Substrate; N. Nakaiwa, M. Yashima, L.T. Fan, and T. Ohmori Batch Extraction of Dilut Acids in a Hollow Fiber Module; D.G. O'Brien and C.E. Glatz Evaluation of a New Electrophoretic Device for Protein Purification; M.-J. Juang and R.G. Harrison Crossflow Microfiltration and Membrane Fouling for Yeast Cell Suspension; S. Redkar and R. Davis Interaction of MBP-β-Galactosidase Fusion Protein with Starch; L. Taladriz and Z. Nikolov Predicting the Solubility of Recombinant Proteins in Escherichia coli; D.L. Wilkinson and R.G. Harrison Evolution of a Phase-Separated, Gravity-Independent Bioractor; P.E. Villeneuve and E.H. Dunlop A Strategy for the Decontamination of Soils Containing Elevated Levels of PCP; S. Ghoshal, S. K. Banelji, and RK. Bajpai Practical Considerations for Implementation of a Field Scale In-Situ Bioremediation Project; J.P. McDonald, CA Baldwin, and L.E. Erickson Parametric Sensitivity Studies of Rhizopus oligosporus Solid Substrate Fermentation; J. Sargantanis, M.N. Karim, and V.G. Murphy, and RP. Tengerdy Production of Acetyl-Xylan Esterase from Aspergillus niger; M.R Samara and J.C. Linden Biological and Latex Particle Partitioning in Aqueous Two-Phase Systems; D.T.L. Hawker, RH. Davis, P.W. Todd, and R Lawson Novel Bioreactor /Separator for Microbial Desulfurization of Coal; H. Gecol, RH. Davis, and J .R Mattoon Effect of Plants and Trees on the Fate, Transport and Biodegradation of Contaminants in the Soil and Ground Water; W. Huang, E. Lee, J.F. Shimp, L.C. Davis, L.E. Erickson, and J.C. Tracy Sound Production by Interfacial Effects in Airlift Reactors; J. Hua, T.-Y. Yiin, LA Glasgow, and L.E. Erickson Soy Yogurt Fermentation of Rapid Hydration Hydrothermal Cooked Soy Milk; P. Tuitemwong, L.E. Erickson, and D.Y.C. Fung Influence of Carbon Source on Pentachlorophenol Degradation by Phanerochaete chrysosportum in Soil; C.-Y.M. Hsieh, RK. Bajpai, and S.K. Banerji Cellular Responses of Insect Cells Spodopiera frugiperda -9 to Hydrodynamic Stresses; P.L.-H. Yeh and RK. Bajpa1 A Mathematical Model for Ripening of Cheddar Cheese; J. Kim, M. Starzak, G.W. Preckshoi, and R.K. Bajpai
Resumo:
This volume contains the Proceedings of the Twenty-Sixth Annual Biochemical Engineering Symposium held at Kansas State University on September 21, 1996. The program included 10 oral presentations and 14 posters. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of some of the papers; many of the papers will be published in full elsewhere. A listing of those who attended is given below. ContentsForeign Protein Production from SV40 Early Promoter in Continuous Cultures of Recombinant CHO Cells - Gautam Banik, Paul Todd, and Dhinakar Kampala Enhanced Cell Recruitment Due to Cell-Cell Interactions - Brad Farlow and Matthias Nollert The Recirculation of Hybridoma Suspension Cultures: Effects on Cell Death, Metabolism and Mab Productivity - Peng Jin and Carole A. Heath The Importance of Enzyme Inactivation and Self-Recovery in Cometabolic Biodegradation of Chlorinated Solvents - Xi-Hui Zhang, Shanka Banerji, and Rakesh Bajpai Phytoremediation of VOC contaminated Groundwater using Poplar Trees - Melissa Miller, Jason Dana, L.C. Davis, Murlidharan Narayanan, and L.E. Erickson Biological Treatment of Off-Gases from Aluminum Can Production: Experimental Results and Mathematical Modeling - Adeyma Y. Arroyo, Julio Zimbron, and Kenneth F. Reardon Inertial Migration Based Separation of Chlorella Microalgae in Branched Tubes - N.M. Poflee, A.L. Rakow, D.S. Dandy, M.L. Chappell, and M.N. Pons Contribution of Electrochemical Charge to Protein Partitioning in Aqueous Two-Phase Systems - Weiyu Fan and Charles C. Glatz Biodegradation of Some Commercial Surfactants Used in Bioremediation - Jun Gu, G.W. Preckshot, S.K. Banerji, and Rakesh Bajpai Modeling the Role of Biomass in Heavy Metal Transport Ln Vadose Zone - K.V. Nedunuri, L.E. Erickson, and R.S. Govindaraju Multivariable Statistical Methods for Monitoring Process Quality: Application to Bioinsecticide Production by 73 89 Bacillus Thuringiensis - c. Puente and M.N. Karim The Use of Polymeric Flocculants in Bacterial Lysate Streams - H. Graham, A.S. Cibulskas and E.H. Dunlop Effect of Water Content on transport of Trichloroethylene in a Chamber with Alfalfa Plants - Muralidharan Narayanan, Jiang Hu, Lawrence C. Davis, and Larry E. Erickson Detection of Specific Microorganisms using the Arbitrary Primed PCR in the Bacterial Community of Vegetated Soil - X. Wu and L.C. Davis Flux Enhancement Using Backpulsing - V.T. Kuberkar and R.H. Davis Chromatographic Purification of Oligonucleotides: Comparison with Electrophoresis - Stephen P. Cape, Ching-Yuan Lee, Kevin Petrini, Sean Foree, Micheal G. Sportiello and Paul Todd Determining Singular Arc Control Policies for Bioreactor Systems Using a Modified Iterative Dynamic Programming Algorithm - Arun Tholudur and W. Fred Ramirez Pressure Effect on Subtilisins Measured via FTIR, EPR and Activity Assays, and Its Impact on Crystallizations - J.N. Webb, R.Y. Waghmare, M.G. Bindewald, T.W. Randolph, J.F. Carpenter, C.E. Glatz Intercellular Calcium Changes in Endothelial Cells Exposed to Flow - Laura Worthen and Matthias Nollert Application of Liquid-Liquid Extraction in Propionic Acid Fermentation - Zhong Gu, Bonita A. Glatz, and Charles E. Glatz Purification of Recombinant T4 Lysozyme from E. Coli: Ion-Exchange Chromatography - Weiyu Fan, Matt L. Thatcher, and Charles E. Glatz Recovery and Purification of Recombinant Beta-Glucuronidase from Transgenic Corn - Ann R. Kusnadi, Roque Evangelista, Zivko L. Nikolov, and John Howard Effects of Auxins and cytokinins on Formation of Catharanthus Roseus G. Don Multiple Shoots - Ying-Jin Yuan, Yu-Min Yang, Tsung-Ting Hu, and Jiang Hu Fate and Effect of Trichloroethylene as Nonaqueous Phase Liquid in Chambers with Alfalfa - Qizhi Zhang, Brent Goplen, Sara Vanderhoof, Lawrence c. Davis, and Larry E. Erickson Oxygen Transport and Mixing Considerations for Microcarrier Culture of Mammalian Cells in an Airlift Reactor - Sridhar Sunderam, Frederick R. Souder, and Marylee Southard Effects of Cyclic Shear Stress on Mammalian Cells under Laminar Flow Conditions: Apparatus and Methods - M.L. Rigney, M.H. Liew, and M.Z. Southard
Resumo:
In this work, we provide an investigation of the role and strength of affinity interactions on the partitioning of the glucose-6-phosphate dehydrogenase in aqueous two-phase micellar systems. These systems are constituted of micellar surfactant solutions and offer both hydrophobic and hydrophilic environments, providing selectivity to biomolecules. We studied G6PD partitioning in systems composed of the nonionic surfactants, separately, in the presence and absence of affinity ligands. We observed that G6PD partitions to the micelle-poor phase, owing to the strength of excluded-volume interactions in these systems that drive the protein to the micelle-poor phase, where there is more free volume available.
Resumo:
Ring opening metathesis polymerization (ROMP) is a variant of olefin metathesis used to polymerize strained cyclic olefins. Ruthenium-based Grubbs’ catalysts are widely used in ROMP to produce industrially important products. While highly efficient in organic solvents such as dichloromethane and toluene, these hydrophobic catalysts are not typically applied in aqueous systems. With the advancements in emulsion and miniemulsion polymerization, it is promising to conduct ROMP in an aqueous dispersed phase to generate well-defined latex nanoparticles while improving heat transfer and reducing the use of volatile organic solvents (VOCs). Herein I report the efforts made using a PEGylated ruthenium alkylidene as the catalyst to initiate ROMP in an oil-in-water miniemulsion. 1H NMR revealed that the synthesized PEGylated catalyst was stable and reactive in water. Using 1,5-cyclooctadiene (COD) as monomer, we showed the highly efficient catalyst yielded colloidally stable polymer latexes with ~ 100% conversion at room temperature. Kinetic studies demonstrated first-order kinetics with good livingness as confirmed by the shift of gel permeation chromatography (GPC) traces. Depending on the surfactants used, the particle sizes ranged from 100 to 300 nm with monomodal distributions. The more strained cyclic olefin norbornene (NB) could also be efficiently polymerized with a PEGylated ruthenium alkylidene in miniemulsion to full conversion and with minimal coagulum formation.
Resumo:
The thermal expansion anisotropy of the V(5)Si(3) and T(2)-phase of the V-Si-B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V(62.5)Si(37.5) (V5Si3 phase) and V(63)Si(12)B(25) (T(2)-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V(5)Si(3) phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 x 10(-6) K(-1) and 11.7 x 10(-6) K(-1), respectively. Similarly, the thermal expansion anisotropy value of the T(2)-phase is 0.9 with thermal expansion coefficients equal to 8.8 x 10(-6) K(-1) and 8.3 x 10(-6) K(-1) along the, a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti(5)Si(3) phase, the V(5)Si(3) phase presents lower thermal expansion anisotropy. The T(2)-phase present in the V-Si-B system exhibits low thermal expansion anisotropy, as the T(2)-phase of the Mo-Si-B, Nb-Si-B and W-Si-B systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Transmission and switching in digital telecommunication networks require distribution of precise time signals among the nodes. Commercial systems usually adopt a master-slave (MS) clock distribution strategy building slave nodes with phase-locked loop (PLL) circuits. PLLs are responsible for synchronizing their local oscillations with signals from master nodes, providing reliable clocks in all nodes. The dynamics of a PLL is described by an ordinary nonlinear differential equation, with order one plus the order of its internal linear low-pass filter. Second-order loops are commonly used because their synchronous state is asymptotically stable and the lock-in range and design parameters are expressed by a linear equivalent system [Gardner FM. Phaselock techniques. New York: John Wiley & Sons: 1979]. In spite of being simple and robust, second-order PLLs frequently present double-frequency terms in PD output and it is very difficult to adapt a first-order filter in order to cut off these components [Piqueira JRC, Monteiro LHA. Considering second-harmonic terms in the operation of the phase detector for second order phase-locked loop. IEEE Trans Circuits Syst [2003;50(6):805-9; Piqueira JRC, Monteiro LHA. All-pole phase-locked loops: calculating lock-in range by using Evan`s root-locus. Int J Control 2006;79(7):822-9]. Consequently, higher-order filters are used, resulting in nonlinear loops with order greater than 2. Such systems, due to high order and nonlinear terms, depending on parameters combinations, can present some undesirable behaviors, resulting from bifurcations, as error oscillation and chaos, decreasing synchronization ranges. In this work, we consider a second-order Sallen-Key loop filter [van Valkenburg ME. Analog filter design. New York: Holt, Rinehart & Winston; 1982] implying a third order PLL The resulting lock-in range of the third-order PLL is determined by two bifurcation conditions: a saddle-node and a Hopf. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This project was proposed as Phase I of a 2-phase program to evaluate the present use of weather information by Iowa Department of Transportation (IaDOT) personnel, recommend revised procedures, and then implement the resulting recommendations. Midway through Phase I (evaluation phase) the FORETELL project was funded. This project is a multi-state venture that engages the National Weather Service (NWS) and the Forecast Systems Laboratory of the National Oceanic and Atmospheric Administration and proposes to supplant the current weather information-generation and distribution system with an advanced system based on state-of-the-art technologies. The focus of the present project was therefore refined to consider use of weather data by IaDOT personnel, and the training programs needed to more effectively use these data. Results of the survey revealed that two major areas - training of personnel on use of data from whatever source and more precise information of frost formation - are not addressed in the FORETELL project. These aspects have been the focus of the present project.
Resumo:
A structurally related series of fluorinated nonionic oxyethylene glycol surfactants of the type C(m)F(2m+1)(CH(2))(n)O[(CH(2)CH(2)O)(p)H], denoted C(m.n)E(p) (where m=4, 6, or 7, m=1 or 2, and p=4 or 6) were synthesized and their surface behavior in aqueous solution was characterized. The ability of these surfactants to form water-in-hydrofluorocarbon (HFC) propellant 134a microemulsions suitable for use in the aerosolized delivery of water-soluble drugs has been investigated. Phase studies showed that, regardless of the composition used, clear one-phase systems could not be prepared if a fluorinated nonionic surfactant was used alone, or in combination with a short or medium fluorocarbon alcohol cosurfactant. Clear one-phase systems could, however, be prepared if a short-chain hydrocarbon alcohol, such as ethanol, n-propanol, or n-pentanol, was used as cosurfactant, with the extent of the one-phase region increasing with decreased chain length of the alcohol cosurfactant. Light-scattering studies on a number of the hydrocarbon-alcoholcontaining systems in the propellant-rich part of the phase diagram showed that only systems prepared with C(4.2)E(6) and propanol contained microemulsion droplets (all other systems investigated were considered to be cosolvent systems).
Resumo:
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 degrees C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L(2)), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L(1) and L(2)). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous ""dry"" surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from ""dry"" to the water droplet structures within the L(2) phase. SAXS analyses have also been performed for selected LC samples. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration
Resumo:
A partial pseudo-ternary phase diagram has been studied for the cethyltrimethylammonium bromide/isooctane:hexanol:butanol/potassium phosphate buffer system, where the two-phase diagram consisting of the reverse micelle phase (L-2) in equilibrium with the solvent is indicated. Based on these diagrams two-phase systems of reverse micelles were prepared with different compositions of the compounds and used for extraction and recovery of two enzymes, and the percentage of enzyme recovery yield monitored. The enzymes glucose-6-phosphate dehydrogenase (G6PD) and xylose redutase (XR) obtained from Candida guilliermondii yeast were used in the extraction procedures. The recovery yield data indicate that micelles having different composition give selective extraction of enzymes. The method can thus be used to optimize enzyme extraction processes. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)