967 resultados para ANTIBIOTIC RESISTANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression of the marORAB multiple antibiotic-resistance operon enhances the resistance of Escherichia coli to various medically significant antibiotics. Transcription of the operon is repressed in vivo by the marR-encoded protein, MarR, and derepressed by salicylate and certain antibiotics. The possibility that repression results from MarR interacting with the marO operator-promoter region was studied in vitro using purified MarR and a DNA fragment containing marO. MarR formed at least two complexes with marO DNA, bound > 30-fold more tightly to it than to salmon sperm DNA, and protected two separate 21-bp sites within marO from digestion by DNase I. Site I abuts the downstream side of the putative -35 transcription-start signal and includes 4 bp of the -10 signal. Site II begins 13 bp downstream of site I, ending immediately before the first base pair of marR. Site II, approximately 80% homologous to site I, is not required for repression since a site II-deleted mutant (marO133) was repressed in trans by wild-type MarR. The absence of site II did not prevent MarR from complexing with the site I of marO133. Salicylate bound to MarR (Kd approximately 0.5 mM) and weakened the interaction of MarR with sites I and II. Thus, repression of the mar operon, which curbs the antibiotic resistance of E. coli, correlates with the formation of MarR-site I complexes. Salicylate appears to induce the mar operon by binding to MarR and inhibiting complex formation, whereas tetracycline and chloramphenicol, which neither bind MarR nor inhibit complex formation, must induce by an indirect mechanism.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clinical use of potent, well-tolerated, broad-spectrum antibiotics has been paralleled by the development of resistance in bacteria, and the prevalence of highly resistant bacteria in some intensive care units is despairingly commonplace. The intensive care community faces the realistic prospect of untreatable nosocomial infections and should be searching for new approaches to diagnose and manage resistant bacteria. In this review, we discuss some of the relevant underlying biology, with a particular focus on genetic transfer vehicles and the relationship of selection pressure to their movements. It is an attempt to demystify the relevant language and concepts for the anaesthetist and intensivist, to explain some of the reasons for the emergence of resistance in bacteria, and to provide a contextual basis for discussion of management approaches such as selective decontamination and antibiotic cycling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Identification of a gene for self-protection from the antibiotic-producing plant pathogen Xanthomonas albilineans, and functional testing by heterologous expression. Methods and Results: Albicidin antibiotics and phytotoxins are potent inhibitors of prokaryote DNA replication. A resistance gene (albF) isolated by shotgun cloning from the X. albilineans albicidin-biosynthesis region encodes a protein with typical features of DHA14 drug efflux pumps. Low-level expression of albF in Escherichia coli increased the MIC of albicidin 3000-fold, without affecting tsx-mediated albicidin uptake into the periplasm or resistance to other tested antibiotics. Bioinformatic analysis indicates more similarity to proteins involved in self-protection in polyketide-antibiotic-producing actinomycetes than to multi-drug resistance pumps in other Gram-negative bacteria. A complex promoter region may co-regulate albF with genes for hydrolases likely to be involved in albicidin activation or self-protection. Conclusions: AlbF is the first apparent single-component antibiotic-specific efflux pump from a Gram-negative antibiotic producer. It shows extraordinary efficiency as measured by resistance level conferred upon heterologous expression. Significance and Impact of the Study: Development of the clinical potential of albicidins as potent bactericidial antibiotics against diverse bacteria has been limited because of low yields in culture. Expression of albF with recently described albicidin-biosynthesis genes may enable large-scale production. Because albicidins are X. albilineans pathogenicity factors, interference with AlbF function is also an opportunity for control of the associated plant disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antibiotic resistance is an increasing problem in isolates of Staphylococcus aureus (S. aureus) worldwide. In 2001 The National Health Service in the UK introduced a mandatory bacteraemia surveillance scheme for the reporting of S. aureus and methicillin-resistant S. aureus (MRSA). This surveillance initiative reports on the percentage of isolates that are methicillin resistant. However, resistance to other antibiotics is not currently reported and therefore the scale of emerging resistance is currently unclear in the UK. In this study, multiple antibiotic resistance (MAR) profiles against fourteen antimicrobial drugs were investigated for 705 isolates of S. aureus collected from two European study sites in the UK (London) and Malta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an opportunistic pathogen found in a wide variety of environments. It is one of the leading causes of morbidity and mortality in cystic fibrosis patients, and one of the main sources of nosocomial infections in the United States. One of the most prominent features of this pathogen is its wide resistance to antibiotics. P. aeruginosa employs a variety of mechanisms including efflux pumps and the expression of B-lactamases to overcome antibiotic treatment. Two chromosomally encoded lactamases, ampC and poxB, have been identified in P. aeruginosa. Sequence analyses have shown the presence of a two-component system (TCS) called MifSR (MifS-Sensor and MifR-Response Regulator), immediately upstream of the poxAB operon. It is hypothesized that the MifSR TCS is involved in B-lactam resistance via the regulation of poxB. Recently, the response regulator MifR has been reported to play a crucial role in biofilm formation, a major characteristic of chronic infections and increased antibiotic resistance. In this study, mifR and mifSR deletion mutants were constructed, and compared to the wild type parent strain PAOl for differences in growth and B-lactam sensitivity. Results obtained thus far indicate that mifR and mifSR are not essential for growth, and do not confer B-lactam resistance under the conditions tested. This study is significant because biofilm formation and antibiotic resistance are two hallmarks of P. aeruginosa infections, and finding a link between these two may lead to the development of improved treatment strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an ubiquitous Gram-negative opportunistic pathogen that is commonly found in nosocomial infections, immunocompromised patients and burn victims. In addition, P. aeruginosa colonizes the lungs of cystic fibrosis patients, leading to chronic infection, which inevitably leads to their demise. In this research, I analyzed the factors contributing to P. aeruginosa antibiotic resistance, such as the biofilm mode of growth, alginate production, and 13-lactamase synthesis. Using the biofilm eradication assay (MBEC™ assay), I exposed P. aeruginosa to B-lactams (piperacillin, ceftazidime, and cefotaxime ), aminoglycosides ( amikacin, tobramycin and gentamicin), and a fluoroquinolone ( ciprofloxacin) at various concentrations. I analyzed the effects of biofilm on P. aeruginosa antibiotic resistance, and confirmed that the parent strain PAO 1 biofilms cells were > 100 times more resistant than planktonic (freefloating) cells. The constitutively alginate-producing strain PDO300 exhibited an altered resistance pattern as compared to the parent strain P AO 1. Finally, the role of AmpR, the regulator of ampC-encoded 13-lactamase expression was analyzed by determining the resistance of the strain carrying a mutation in the ampR gene and compared to the parent strain PAOl. It was confirmed that the loss of ampR contributes to increased antibiotic resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.

METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.

RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).

CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of antibiotics was a major breakthrough in medicine. However, short after their introduction in clinical practice resistant bacteria were detected. Nowadays, antibiotic resistance constitutes a serious public health problem. In hospital settings, with high resistance levels, reducing drastically the therapeutic options. Carbapenems are last-resort antibiotics used in Portugal, only in hospitals, to treat serious infections. Bacterial resistance towards this class of antibiotics has increased during last years. In Gram-negative bacteria the production of carbapenemases is a common resistance mechanism. OXA-48 is a carbapenemase of Ambler class D and represents a major concern for human health. It is frequently detected in clinical isolates of Enterobacteriaceae. There are few studies suggesting that genes encoding for OXA-48 variants originated from genes present in the chromosome of members of genus Shewanella, and have disseminated to Enterobacteriaceae members, associated with mobile genetic elements. The aim of this study was to characterize strains from different sources of Shewanella to confirm its role as OXA-48 progenitor. For this, the phylogenetic affiliation of 33 strains of Shewanella was performed by 16SrDNA and gyrB sequencing. The most common species were S. hafniensis and S. xiamenensis, but also S. aestuarii, S. baltica, S. indica, S. haliotis, S. putrefaciens, S. algidipiscicola, S. irciniae, S. algae and S. fodinae were identified. blaOXA-48-like genes were detected in 21 isolates: S. hafniensis (8/8), S. xiamenensis (5/5), S. baltica (4/4), S. algae (1/1), S. fodinae (1/1), S. putrefaciens (1/2) and S. algidipiscicola (1/2). Sequence analysis revealed that genes encoded enzymes identical to OXA-48, OXA-181 and OXA-204 but also new variants differing from OXA-48 from 2 to 81 aminoacids. Genetic context analysis revealed the C15 gene upstream and lysR gene downstream, identical to what has been identified so far flanking blaOXA-48-like genes in Shewanella spp. The assessment of antibiotic susceptibility was performed for all isolates using the disk diffusion method. In general, it was observed a great sensitivity for all antibiotics except to amoxicillin and aztreonam. Multidrug resistance was detected in only 1 isolate. Other resistance genes and the presence of integrons were not identified. Plasmids were detected in 30.3% isolates (10/ 33). These results reinforce the role of Shewanella spp. as origin of blaOXA-48-like genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To the Editor—We thank Bonten and Mevius for their interest in our systematic review [1]. In their letter, they disagree with our finding that whole-bacterium transmission (WBT) of expanded-spectrum cephalosporin-resistant (ESCR) Escherichia coli between food-producing animals and humans likely contributes to the burden of human extraintestinal infections. We respectfully argue against 2 assumptions that underlie their assertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2012, were estimated 6.7 million cases of healthcare-associated infections (HAI) either in long-term care facilities or acute-care hospitals from which result 37,000 deaths configuring a serious public health problem. The etiological agents are diverse and often resistant to antimicrobial drugs. One of the mechanisms responsible for the emergence of drug resistance is biofilm assembly. Biofilms are defined as thin layers of microorganisms adhering to the surface of a structure, which may be organic or inorganic, together with the polymers that they secrete. They are dynamic structures which experience different stages of organization with the ageing and are linked to an increase in bacterial resistance to host defense mechanisms, antibiotics, sterilization procedures other than autoclaving, persistence in water distribution systems and other surfaces. The understanding of bacteria organization within the biofilm and the identification of differences between planktonic and sessile forms of bacteria will be a step forward to fight HAIs.