955 resultados para 64-477
(Table 1) Sample descriptions and results: Carbon, lipid, and kerogen analyses, at DSDP Leg 64 Holes
Resumo:
Pleistocene sediments in the Guaymas Basin, Gulf of California, have been intruded by sills and their organic matter thus subjected to thermal stress. Sediment samples from DSDP/IPOD Sites 477, 478, and 481, and samples of thermally unaltered materials from Sites 474 and 479 were analyzed to characterize the lipids and kerogens and to evaluate the effects of the intrusive thermal stresses. The lipids of the thermally unaltered samples are derived from microbial and terrestrial higher-plant detritus. The samples from the sill proximities contain the distillates, and those adjacent to the sills contain essentially no lipids. The pyrograms of the kerogens from the unaltered samples reflect their predominantly autochthonous microbial origin. When compared with the unaltered samples, the pyrograms of the altered kerogen samples reflect the thermal effects by a reduction in the complexity of the products. Kerogens adjacent to the sills produced little or no pyrolysis products. The effects of intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter, as confirmed by these data.
Resumo:
This book presents new data on chemical and mineral compositions and on density of altered and fresh igneous rocks from key DSDP and ODP holes drilled on the following main tectonomagmatic structures of the ocean floor: 1. Mid-ocean ridges and abyssal plains and basins (DSDP Legs 37, 61, 63, 64, 65, 69, 70, 83, and 91 and ODP Legs 106, 111, 123, 129, 137, 139, 140, 148, and 169); 2. Seamounts and guyots (DSDP Legs 19, 55, and 62 and ODP Legs 143 and 144); 3. Intraplate rises (DSDP Legs 26, 33, 51, 52, 53, 72, and 74 and ODP Legs 104, 115, 120, 121, and 183); and 4. Marginal seas (DSDP Legs 19, 59, and 60 and ODP Legs 124, 125, 126, 127, 128, and 135). Study results of altered gabbro from the Southwest Indian Ridge (ODP Leg 118) and serpentinized ultramafic rocks from the Galicia margin (ODP Leg 103) are also presented. Samples were collected by the authors from the DSDP/ODP repositories, as well as during some Glomar Challenger and JOIDES Resolution legs. The book also includes descriptions of thin sections, geochemical diagrams, data on secondary mineral assemblages, and recalculated results of chemical analyses with corrections for rock density. Atomic content of each element can be quantified in grams per standard volume (g/1000 cm**3). The suite of results can be used to estimate mass balance, but parts of the data need additional work, which depends on locating fresh analogs of altered rocks studied here. Results of quantitative estimation of element mobility in recovered sections of the upper oceanic crust as a whole are shown for certain cases: Hole 504B (Costa Rica Rift) and Holes 856H, 857C, and 857D (Middle Valley, Juan de Fuca Ridge).
Resumo:
The effects of intrusive thermal stress have been studied on a number of Pleistocene sediment samples obtained from Leg 64 of the DSDP-IPOD program in the Gulf of California. Samples were selected from Sites 477, 478 and 481 where the organic matter was subjected to thermal stress from sill intrusions. For comparison purposes, samples from Sites 474 and 479 were selected as representative of unaltered material. The GC and GC-MS data show that lipids of the thermally unaltered samples were derived from microbial and terrestrial higher-plant detritus. Samples from sill proximities were found to contain thermally-derived distillates and those adjacent to sills contained essentially no lipids. Curie point pyrolysis combined with GC and GC-MS was used to show that kerogens from the unaltered samples reflected their predominantly autochthonous microbial origin. Pyrograms of the altered kerogens were much less complex than the unaltered samples, reflecting the thermal effects. The kerogens adjacent to the sills produce little or no pyrolysis products since these intrusions into unconsolidated, wet sediments resulted in in situ pyrolysis of the organic matter. Examination of the kerogens by ESR showed that spin density and line width pass through a maximum during the course of alteration but ESR g-values show no correlation with maturity. Stable carbon isotope (d13C) values of kerogens decrease by 1-1.5 per mil near the sills at Sites 477 and 481 and the atomic N/C decreases slightly with proximity to a smaller sill at Site 478. Differences in maturation behavior between Site 477 and 481 and Site 478 are attributed to dissimilarities in thermal stress and to chemical and isotopic heterogeneity of Guaymas Basin protokerogen.
Resumo:
The decision of the Court of Appeal in Dunworth v Mirvac Qld Pty Ltd [2011] QCA 200 arose from unusual circumstances associated with the flood in Brisbane earlier this year. Maris Dunworth (‘the buyer’) agreed to purchase a ground floor residential apartment located beside the Brisbane River at Tennyson from Mirvac Queensland Pty Ltd (‘Mirvac’). The original date for completion was 12 May 2009. In earlier proceedings, the buyer had alleged that she had been induced to purchase the apartment by false, misleading and deceptive representations. This claim was dismissed and an order for specific performance was made with a new completion date of 8 February 2011...
Resumo:
Despite an abundance of polyembryonic genotypes and the need for rootstocks that improve scion yield and productivity, simultaneous field testing of a wide range of mango (Mangifera indica L.) genotypes as rootstocks has not previously been reported. In this experiment, we examined the growth and yield of 'Kensington Pride' on 64 mango genotypes of diverse origin during the first four seasons of fruit production to identify those worth longer-term assessment. We also recorded morphological characteristics of seedlings of 46 of these genotypes in an attempt to relate these measures to subsequent field performance. Tree canopy development on the most vigorous rootstocks was almost double that on the least vigorous. Growth rates differed by more than 160%. Cumulative marketable yield ranged from 36 kg/tree for the lowest yielding rootstock to 181 kg/tree for the most productive. Yield efficiency also differed markedly among the 64 rootstocks with the best treatment being 3.5 times more efficient than the poorest treatment. No relationship was found between yield efficiency and tree size, suggesting it is possible to select highly efficient rootstocks of differing vigor. Two genotypes ('Brodie' and 'MYP') stood out as providing high yield efficiency with small tree size. A further two genotypes ('B' and 'Watertank') were identified as offering high yield efficiency and large tree size and should provide high early yields at traditional tree spacing. Efforts to relate the morphology of different genotype seedlings to subsequent performance as a rootstock showed that nursery performance of mango seedlings is no indication of their likely behavior as a rootstock. The economic cost of poor yields and low yield efficiencies during the early years of commercial orchard production provide a rationale for culling many of the rootstock treatments in this experiment and concentrating future assessment on the top ~20% of the 64 treatments. Of these, 'MYP', 'B', 'Watertank', 'Manzano', and 'Pancho' currently show the most promise.
Resumo:
In this paper, we present Dynamic Voltage and Frequency Managed 256 x 64 SRAM block in 65nm technology, for frequency ranging from 100MHz to 1GHz. The total energy is minimized for any operating frequency in the above range and leakage energy is minimized during standby mode. Since noise margin of SRAM cell deteriorates at low voltages, we propose Static Noise Margin improvement circuitry, which symmetrizes the SRAM cell by controlling the body bias of pull down NMOS transistor. We used a 9T SRAM cell that isolates Read and Hold Noise Margin and has less leakage. We have implemented an efficient technique of pushing address decoder into zigzag-super-cut-off in stand-by mode without affecting its performance in active mode of operation. The Read Bit Line (RBL) voltage drop is controlled and pre-charge of bit lines is done only when needed for reducing power wastage.
Resumo:
In this paper, we present dynamic voltage and frequency Managed 256 x 64 SRAM block in 65 nm technology, for frequency ranging from 100 MHz to 1 GHz. The total energy is minimized for any operating frequency in the above range and leakage energy is minimized during standby mode. Since noise margin of SRAM cell deteriorates at low voltages, we propose static noise margin improvement circuitry, which symmetrizes the SRAM cell by controlling the body bias of pull down NMOS transistor. We used a 9T SRAM cell that isolates Read and hold noise margin and has less leakage. We have implemented an efficient technique of pushing address decoder into zigzag- super-cut-off in stand-by mode without affecting its performance in active mode of operation. The read bit line (RBL) voltage drop is controlled and pre-charge of bit lines is done only when needed for reducing power wastage.
Resumo:
This paper presents a Radix-4(3) based FFT architecture suitable for OFDM based WLAN applications. The radix-4(3) parallel unrolled architecture presented here, uses a radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. A 64 point FFT processor based on the proposed architecture has been implemented in UMC 130nm 1P8M CMOS process with a maximum clock frequency of 100 MHz and area of 0.83mm(2). The proposed processor provides a throughput of four times the clock rate and can finish one 64 point FFT computation in 16 clock cycles. For IEEE 802.11a/g WLAN, the processor needs to be operated at a clock rate of 5 MHz with a power consumption of 2.27 mW which is 27% less than the previously reported low power implementations.
Resumo:
Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.