918 resultados para 620206 Berry fruit
Resumo:
Traps baited with synthetic aggregation pheromone and fermenting bread dough were used to monitor seasonal incidence and abundance of the ripening fruit pests, Carpophilus hemipterus (L.), C. mutilatus Erichson and C. davidsoni Dobson in stone fruit orchards in the Leeton district of southern New South Wales during five seasons (1991-96). Adult beetles were trapped from September-May, but abundance varied considerably between years with the amount of rainfall in December-January having a major influence on population size and damage potential during the canning peach harvest (late February-March). Below average rainfall in December-January was associated with mean trap catches of < 10 beetles/trap/week in low dose pheromone traps during the harvest period in 1991/92 and 1993/94 and no reported damage to ripening fruit. Rainfall in December-January 1992/93 was more than double the average and mean trap catches ranged from 8-27 beetles/week during the harvest period with substantial damage to the peach crop. December-January rainfall was also above average in 1994/95 and 1995/96 and means of 50-300 beetles/trap/week were recorded in high dose pheromone traps during harvest periods. Carpophilus spp. caused economic damage to peach crops in both seasons. These data indicate that it may be possible to predict the likelihood of Carpophilus beetle damage to ripening stone fruit in inland areas of southern Australia, by routine pheromone-based monitoring of beetle populations and summer temperatures and rainfall.
Resumo:
The utility of near infrared spectroscopy as a non-invasive technique for the assessment of internal eating quality parameters of mandarin fruit (Citrus reticulata cv. Imperial) was assessed. The calibration procedure for the attributes of TSS (total soluble solids) and DM (dry matter) was optimised with respect to a reference sampling technique, scan averaging, spectral window, data pre-treatment (in terms of derivative treatment and scatter correction routine) and regression procedure. The recommended procedure involved sampling of an equatorial position on the fruit with 1 scan per spectrum, and modified partial least squares model development on a 720–950-nm window, pre-treated as first derivative absorbance data (gap size of 4 data points) with standard normal variance and detrend scatter correction. Calibration model performance for the attributes of TSS and DM content was encouraging (typical Rc2 of >0.75 and 0.90, respectively; typical root mean squared standard error of calibration of <0.4 and 0.6%, respectively), whereas that for juiciness and total acidity was unacceptable. The robustness of the TSS and DM calibrations across new populations of fruit is documented in a companion study.
Resumo:
The robustness of multivariate calibration models, based on near infrared spectroscopy, for the assessment of total soluble solids (TSS) and dry matter (DM) of intact mandarin fruit (Citrus reticulata cv. Imperial) was assessed. TSS calibration model performance was validated in terms of prediction of populations of fruit not in the original population (different harvest days from a single tree, different harvest localities, different harvest seasons). Of these, calibration performance was most affected by validation across seasons (signal to noise statistic on root mean squared error of prediction of 3.8, compared with 20 and 13 for locality and harvest day, respectively). Procedures for sample selection from the validation population for addition to the calibration population (‘model updating’) were considered for both TSS and DM models. Random selection from the validation group worked as well as more sophisticated selection procedures, with approximately 20 samples required. Models that were developed using samples at a range of temperatures were robust in validation for TSS and DM.
Resumo:
Predictive models based on near infra-red spectroscopy for the assessment of fruit internal quality attributes must exhibit a degree of robustness across the parameters of variety, district and time to be of practical use in fruit grading. At the time this thesis was initiated, while there were a number of published reports on the development of near infra-red based calibration models for the assessment of internal quality attributes of intact fruit, there were no reports of the reliability ("robustness") of such models across time, cultivars or growing regions. As existing published reports varied in instrumentation employed, a re-analysis of existing data was not possible. An instrument platform, based on partial transmittance optics, a halogen light source and (Zeiss MMS 1) detector operating in the short wavelength near infra-red region was developed for use in the assessment of intact fruit. This platform was used to assess populations of macadamia kernels, melons and mandarin fruit for total soluble solids, dry matter and oil concentration. Calibration procedures were optimised and robustness assessed across growing areas, time of harvest, season and variety. In general, global modified partial least squares regression (MPLS) calibration models based on derivatised absorbance data were better than either multiple linear regression or `local' MPLS models in the prediction of independent validation populations . Robustness was most affected by growing season, relative to the growing district or variety . Various calibration updating procedures were evaluated in terms of calibration robustness. Random selection of samples from the validation population for addition to the calibration population was equivalent to or better than other methods of sample addition (methods based on the Mahalanobis distance of samples from either the centroid of the population or neighbourhood samples). In these exercises the global Mahalanobis distance (GH) was calculated using the scores and loadings from the calibration population on the independent validation population. In practice, it is recommended that model predictive performance be monitored in terms of predicted sample GH, with model updating using as few as 10 samples from the new population undertaken when the average GH value exceeds 1 .0 .
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded: chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.
Resumo:
To identify genes involved in papaya fruit ripening, a total of 1171 expressed sequence tags (ESTs) were generated from randomly selected clones of two independent fruit cDNA libraries derived from yellow and red-fleshed fruit varieties. The most abundant sequences encoded:chitinase, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase, catalase and methionine synthase, respectively. DNA sequence comparisons identified ESTs with significant similarity to genes associated with fruit softening, aroma and colour biosynthesis. Putative cell wall hydrolases, cell membrane hydrolases, and ethylene synthesis and regulation sequences were identified with predicted roles in fruit softening. Expressed papaya genes associated with fruit aroma included isoprenoid biosynthesis and shikimic acid pathway genes and proteins associated with acyl lipid catabolism. Putative fruit colour genes were identified due to their similarity with carotenoid and chlorophyll biosynthesis genes from other plant species.
Resumo:
The object of this investigation was to develop high quality aseptically packaged mango and passionfruit puree products. Kensington mango puree (acidified to ph 3.5) and deseeded passionfruit pulp (ph 3.0) were sterilised in a scraped-surface heat exchanger, cooled to 20°C in a tubular heat-exchanger, aseptically packaged in sterile laminate bags. Six sterilising time/temperature combinations were compared - 85°C/15 secs, 85°C/60 secs, 90° C/15 secs, 90°/60 secs, 95°C/15 secs, 95°C/60 secs. Products were assessed immediately after processing, and after eight months ambient storage, for microbial, physical, chemical, and sensory quality. All treatments were microbiologically sound and showed no enzyme activity. Sensory quality was very acceptable, and there was no evidence of heat damage. Quality (especially colour and flavour) decreased during storage in all heat treatments.
Resumo:
Fruit-piercing moths are significant pests of a range of fruit crops throughout much of the world's tropics and subtropics. Feeding damage by the adult moths is most widely reported in varieties of citrus. In the years 2003 and 2004, fruit-piercing moth activity was observed regularly at night in citrus crops in northeast Australia, to determine the level of maturity (based on rind colour) and soundness of fruit attacked. 'Navelina' navel and 'Washington' navel orange, grapefruit and mixed citrus crops were assessed, and fruit was rated and placed into five categories: green, colouring, ripe, overripe and damaged. There were no statistical differences in the percentage of fruit attacked in each category across crops. However, within the individual crops significant proportions of green 'Navelina' fruit (58.7%) and green mixed citrus (57.1%) were attacked in 2004. Among all the crops assessed, 25.1% of moth feeding occurred on overripe or damaged fruit. Crops started to be attacked at least 8 weeks before picking, but in two crops there were large influxes of moths (reaching 27 and 35 moths/100 trees, respectively) immediately before harvest. Moth activity was most intense between late February and late March. Eudocima fullonia (Clerck) represented 79.1% of all moths recorded on fruit, with Eudocima materna (L.), Eudocima salaminia (Cramer) and Serrodes campana (Guen.) the only other species observed capable of inflicting primary damage. Our results suggest that growers should monitor moth activity from 8 weeks before harvest and consider remedial action if moth numbers increase substantially as the crop matures or there is a history of moth problems. The number of fruit pickings could be increased to progressively remove ripe fruit or early harvest of the entire crop contemplated if late influxes of moths are known.
Resumo:
Two related, novel, zoonotic paramyxoviruses have been described recently. Hendra virus was first reported in horses and thence humans in Australia in 1994; Nipah virus was first reported in pigs and thence humans in Malaysia in 1998. Human cases of Nipah virus infection, apparently unassociated with infection in livestock, have been reported in Bangladesh since 2001. Species of fruit bats (genus Pteropus ) have been identified as natural hosts of both agents. Anthropogenic changes (habitat loss, hunting) that have impacted the population dynamics of Pteropus species across much of their range are hypothesised to have facilitated emergence. Current strategies for the management of henipaviruses are directed at minimising contact with the natural hosts, monitoring identified intermediate hosts, improving biosecurity on farms, and better disease recognition and diagnosis. Investigation of the emergence and ecology of henipaviruses warrants a broad, cross-disciplinary ecosystem health approach that recognises the critical linkages between human activity, ecological change, and livestock and human health.
Resumo:
High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.
Resumo:
Consumption of freshly-cut horticultural products has increased in the last few years. The principal restraint to using freshly-cut carambola is its susceptibility to tissue-browning, due to polyphenol oxidase-mediated oxidation of phenolic compounds present in the tissue. The current study investigated the susceptibility to browning of star fruit slices (Averrhoa carambola L.) of seven genotypes (Hart, Golden Star, Taen-ma, Nota-10, Malasia, Arkin, and Fwang Tung). Cultivar susceptibility to browning as measured by luminosity (L*) varied significantly among genotypes. Without catechol 0.05 M, little changes occurred on cut surface of any cultivars during 6 hour at 25 degrees C, 67% RH. Addition of catechol led to rapid browning, which was more intense in cvs. Taen-ma, Fwang Tung, and Golden Star, with reduction in L* value of 28.60%, 27.68%, and 23.29%, respectively. Browning was more intense in the center of the slices, particularly when treated with catechol, indicating highest polyphenol oxidase (PPO) concentration. Epidermal browning, even in absence of catechol, is a limitation to visual acceptability and indicates a necessity for its control during carambola processing. Care must be given to appropriate selection of cultivars for fresh-cut processing, since cultivar varied in browning susceptibility in the presence of catechol.
Resumo:
The anti-oxidant activity of persimmon fruit appears to be mainly due to its high-molecular-weight tannin content. Antioxidant activity is variety specific with some astringent varieties showing very high antioxidant activity, comparable to strawberry and blueberry. In vitro, and limited animal studies, have shown that condensed tannins in the fruit may reduce the risk of cardiovascular disease, hypertension, diabetes and a wide range of cancers. Persimmon has an unusual property in that it appears to alter and reduce the rate of alcohol absorption and metabolism and thus ameliorate the symptoms of a hangover. The health and medicinal benefits of persimmon are considerable and should be further researched and promoted by persimmon industries around the world.
Resumo:
Data from the eradication of the incursion of Bactrocera papayae Drew and Hancock (Dipt.: Tephritidae) in Australia (1995-1998) are used to assess the significance of various aspects of invasion theory, including the influence of towns on establishment, influence of propagule pressure on the pattern of establishment, and the existence of source-sink dynamics. Because there were no sentinel traps in place, considerable spread had occurred before the eradication campaign started. The distribution of fly density around the epicentre in the town of Cairns and a transect along the main traffic routes to the north and south fitted a Cauchy model with a tail having the same slope as a power model with an exponent of -2.4 extending to 160 km. The Cauchy model indicated that 50% of the flies on the transect would have occurred within 3.2 km of the epicentre, 90% within 13.2 km, and 99% within 60 km. The two major satellites at Mareeba (35 km from the epicentre in Cairns) and Mossman (65 km) were not used for the transect data and had respectively 15 and 30 times the density predicted by the model. The proportion of traps that caught flies (a measure of site occupancy) fell with distance from the epicentre. B. papayae was trapped consistently on only three of the 16 rainforest transects that were surveyed and these were relatively close to urban areas where eradication efforts were intense. Despite there being no eradication effort in the rainforest, the trends to extinction were similar to those in adjacent areas. The strategy of initially concentrating eradication efforts on the core and major satellites while maintaining a quarantine barrier at the airport and the boundaries of the infested area appears to be the key to the containment and rapid eradication of the incursion.
Resumo:
Near infrared spectroscopy (NIRS) can be used for the on-line, non-invasive assessment of fruit for eating quality attributes such as total soluble solids (TSS). The robustness of multivariate calibration models, based on NIRS in a partial transmittance optical geometry, for the assessment of TSS of intact rockmelons (Cucumis melo) was assessed. The mesocarp TSS was highest around the fruit equator and increased towards the seed cavity. Inner mesocarp TSS levels decreased towards both the proximal and distal ends of the fruit, but more so towards the proximal end. The equatorial region of the fruit was chosen as representative of the fruit for near infrared assessment of TSS. The spectral window for model development was optimised at 695-1045 nm, and the data pre-treatment procedure was optimised to second-derivative absorbance without scatter correction. The 'global' modified partial least squares (MPLS) regression modelling procedure of WINISI (ver. 1.04) was found to be superior with respect to root mean squared error of prediction (RMSEP) and bias for model predictions of TSS across seasons, compared with the 'local' MPLS regression procedure. Updating of the model with samples selected randomly from the independent validation population demonstrated improvement in both RMSEP and bias with addition of approximately 15 samples.
Resumo:
Inconsistent internal fruit quality in Hass avocados affects consumer confidence. To determine the influence of individual trees on fruit quality, Hass avocado fruit were harvested from adjacent trees of similar external appearance in 3 commercial orchards in 1998 and 1 orchard in 1999. The trees in each orchard were grown with similar commercial practices and in similar soil types. Within each location, there were significant (P<0.05) differences in the mean ripe fruit quality between trees with respect to fruit body rot severity (mainly anthracnose) with and without cold storage, internal disorders severity due to diffuse discolouration and vascular browning (after cold storage), days to ripen, percentage dry matter, and the percentage of the skin area with purple-black colour when ripe. These effects were also noted in the same orchard in 1999. There were significant (P<0.05) differences in fruit flesh calcium, magnesium, potassium, boron and zinc concentrations between trees. Significant (P<0.05) correlations were observed between average fruit mineral concentrations in each tree (particularly calcium, magnesium and potassium) and body rot severity, percentage dry matter and fruit mass. There was little conclusive evidence that characteristics such as the growth of the non-suberised roots or the degree of scion under- or overgrowth was involved in these tree effects; however, differences between trees with respect to other rootstock characteristics may be involved. The inconsistency of the correlations across sites and years suggested that other factors apart from tree influences could also affect the relationship between fruit minerals and fruit quality.