1 resultado para 620206 Berry fruit
em CaltechTHESIS
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (4)
- Archive of European Integration (29)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (5)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (6)
- Biodiversity Heritage Library, United States (6)
- Bioline International (1)
- Blue Tiger Commons - Lincoln University - USA (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Brock University, Canada (66)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (47)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (127)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (10)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (93)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (47)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (19)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (3)
- National Center for Biotechnology Information - NCBI (24)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (47)
- Queensland University of Technology - ePrints Archive (56)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (147)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (36)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (2)
- University of Michigan (2)
- University of Queensland eSpace - Australia (1)
Resumo:
In this thesis we describe a system that tracks fruit flies in video and automatically detects and classifies their actions. We introduce Caltech Fly-vs-Fly Interactions, a new dataset that contains hours of video showing pairs of fruit flies engaging in social interactions, and is published with complete expert annotations and articulated pose trajectory features. We compare experimentally the value of a frame-level feature representation with the more elaborate notion of bout features that capture the structure within actions. Similarly, we compare a simple sliding window classifier architecture with a more sophisticated structured output architecture, and find that window based detectors outperform the much slower structured counterparts, and approach human performance. In addition we test the top performing detector on the CRIM13 mouse dataset, finding that it matches the performance of the best published method.