953 resultados para 290802 Water and Sanitary Engineering
Resumo:
A hydraulic jump is the transition from a supercritical open channel flow to a subcritical regime. It is characterised by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air-water flow measurements were performed in hydraulic jump flows for a range of inflow Froude numbers. The experiments were conducted in a large-size facility using two types of phase-detection intrusive probes: i.e., single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The present study was focused on the turbulence characteristics of hydraulic jumps with partially-developed inflow conditions. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The present results highlighted some influence of the inflow Froude number onto the air bubble entrainment process. At the largest Froude numbers, the advected air bubbles were more thoroughly dispersed vertically, and larger amount of air bubbles were detected in the turbulent shear layer. In the air-water mixing layer, the maximum void fraction and bubble count rate data showed some longitudinal decay function in the flow direction. Such trends were previously reported in the literature. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The present data suggested some longitudinal decay of the turbulence intensity. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of CHANSON (2006,2007). The results provided the integral turbulent time and length scales of the eddy structures advecting the air bubbles in the developing shear layer. The experimental data showed that the auto-correlation time scale Txx was larger than the transverse cross-correlation time scale Txz. The integral turbulence length scale Lxz was a function of the inflow conditions, of the streamwise position (x-x1)/d1 and vertical elevation y/d1. Herein the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e., Lxz/d1 = 0.2 to 0.8, with Lxz increasing towards the free-surface. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. A linear relationship was found between the normalized maximum free-surface fluctuation and the inflow Froude number.
Resumo:
A hydraulic jump is characterized by strong energy dissipation and mixing, large-scale turbulence, air entrainment, waves and spray. Despite recent pertinent studies, the interaction between air bubbles diffusion and momentum transfer is not completely understood. The objective of this paper is to present experimental results from new measurements performed in rectangular horizontal flume with partially-developed inflow conditions. The vertical distributions of void fraction and air bubbles count rate were recorded for inflow Froude number Fr1 in the range from 5.2 to 14.3. Rapid detrainment process was observed near the jump toe, whereas the structure of the air diffusion layer was clearly observed over longer distances. These new data were compared with previous data generally collected at lower Froude numbers. The comparison demonstrated that, at a fixed distance from the jump toe, the maximum void fraction Cmax increases with the increasing Fr1. The vertical locations of the maximum void fraction and bubble count rate were consistent with previous studies. Finally, an empirical correlation between the upper boundary of the air diffusion layer and the distance from the impingement point was provided.
Resumo:
In high-velocity free-surface flows, air is continuously being trapped and released through the free-surface. Such high-velocity highly-aerated flows cannot be studied numerically because of the large number of relevant equations and parameters. Herein an advanced signal processing of traditional single- and dual-tip conductivity probes provides some new information on the air-water turbulent time and length scales. The technique is applied to turbulent open channel flows in a large-size facility. The auto- and cross-correlation analyses yield some characterisation of the large eddies advecting the bubbles. The transverse integral turbulent length and time scales are related to the step height: i.e., Lxy/h ~ 0.02 to 0.2, and T.sqrt(g/h) ~ 0.004 to 0.04. The results are irrespective of the Reynolds numbers. The present findings emphasise that turbulent dissipation by large-scale vortices is a significant process in the intermediate zone between the spray and bubbly flow regions (0.3 < C < 0.7). Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. The results are significant because they provide a picture general enough to be used to characterise the air-water flow field in prototype spillways.
Resumo:
In small estuaries, the predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure. Herein detailed turbulence measurements and suspended sediment concentrations were conducted simultaneously and continuously at high-frequency for 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. The data analyses provided an unique characterisation of the turbulent mixing processes and suspended sediment fluxes. The turbulence was neither homogeneous nor isotropic, and it was not a Gaussian process. The integral time scales for turbulence and suspended sediment concentration were about equal during flood tides, but differed significantly during ebb tides. The field experiences showed that the turbulence measurements must be conducted at high-frequency to characterise the small eddies and the viscous dissipation process, while a continuous sampling was necessary to characterise the time-variations of the instantaneous velocity field, Reynolds stress tensor and suspended sediment flux during the tidal cycles.
Resumo:
Erluanbi is the most southern tip of Taiwan (Formosa) where the Taiwan (Formosa) Strait meets the Pacific Ocean. The Erluanbi national park is renown for its lighthouse, and its coral reef, and it hosts also some prehistoric sites bating back to 5,000 to 6,500 years. The Erluanbi (or Eluan Pi) lighthouse was completed in 1883, following requests from the American and Japanese governments to the Chinese government after several ship wrecks in the 1860s. Chinese troops were sent to protect the lighthouse construction from attacks by local tribesmen, and the lighthouse was surrounded a small fort with cannons and a ditch to protect it. It is a rare example of a fortified lighthouse in the world. The lighthouse itself is 21.4 m high and its light is 56.4 m above high water. The light flashes every 10 seconds and its range is 27.2 nautical miles. The surrounding Erluanbi national park is located on a raised coral reef with some huge fringing reef : e.g., the "sea pavillon". With the topical oceanic climate, the elevated reef hosts an unique vegetation and ecology. Since 1956, numerous prehistoric artefacts were uncovered including stone slab coffins and pottery (plain and painted), that encompassed at least four cultural stages from BC 4,500 to AD 800.
Resumo:
The truncation errors associated with finite difference solutions of the advection-dispersion equation with first-order reaction are formulated from a Taylor analysis. The error expressions are based on a general form of the corresponding difference equation and a temporally and spatially weighted parametric approach is used for differentiating among the various finite difference schemes. The numerical truncation errors are defined using Peclet and Courant numbers and a new Sink/Source dimensionless number. It is shown that all of the finite difference schemes suffer from truncation errors. Tn particular it is shown that the Crank-Nicolson approximation scheme does not have second order accuracy for this case. The effects of these truncation errors on the solution of an advection-dispersion equation with a first order reaction term are demonstrated by comparison with an analytical solution. The results show that these errors are not negligible and that correcting the finite difference scheme for them results in a more accurate solution. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The sudden release of a mass of fluid in a channel generates a highly unsteady flow motion, called dam break wave. While industrial fluids exhibit sometimes non-Newtonian behaviours, the viscous fluid flow assumption remains a useful approximation for simplified analyses. In this study, new solutions of laminar dam break wave are proposed for a semi-infinite reservoir based upon the method of characteristics. The solutions yield simple explicit expressions of the wave front location, wave front celerity and instantaneous free-surface profiles that compare favourably with experimental observations. Both horizontal and sloping channel configurations are treated. The simplicity of the equations may allow future extension to more complicated fluid flows.
Resumo:
Sediment mobility measurements with a horizontal sand bed under non-breaking waves are reported. Conditions include no seepage and steady downward seepage corresponding to head gradients up to 2.5. The results indicate that infiltration tends to inhibit sediment mobility for a horizontal bcd of 0.2 mm quartz sand exposed to moderated wave induced bed shear stresses. The effect is weak for the parameter range of the present study. The two opposing effects of shear stress increase due to boundary layer thinning and the stabilizing downward drag are successfully accounted for through the modified Shields parameter of Nielsen [Nielsen, P., 1997. Coastal groundwater dynamics. Proc. Coastal Dynamics '97, Plymouth, ASCE, Dp, 546-555] using coefficients derived from independent studies. That is, from the shear stress experiments of Conley [Conley, D.C., 1993. Ventilated oscillatory boundary layers. PhD Thesis, University of California, San Diego, 74 pp.] and the slope stability experiments of Martin and Aral [Martin, C.S. and M.M. Aral, 1971. Seepage force on interfacial bed particles. J. Hydraulics Div., proc. ASCE, Vol. 97, No. Hy7, pp. 1081-1100]. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Culverts are among the most common hydraulic structures. Modern designs do not differ from ancient structures and are often characterised by significant afflux at design flows. A significant advance was the development of the Minimum Energy Loss (MEL) culverts in the late 1950s. The design technique allows a drastic reduction in upstream flooding associated with lower costs. The development and operational performances of this type of structure is presented. The successful operation of MEL culverts for more than 40 years is documented with first-hand records during and after floods. The experiences demonstrate the design soundness while highlighting the importance of the hydraulic expertise of the design engineers.
Resumo:
The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi-steady-slate rise in the mean water-table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial consequences for the local velocity field in the vicinity of the exit face, which affects the nearshore migration of contaminant in coastal aquifers. An overheight in the water table as a result of the tidal fluctuation is observed anti this has a significant effect on groundwater discharge to the sea when the landward boundary condition is a constant water level. The effect of beach slope is very significant and simplifying the problem by considering a vertical beach face causes serious errors in predicting the water-table position and the groundwater flux. For media with a high effective capillary fringe, the moisture retained above the water table is important in determining the effects of the tidal fluctuations. Copyright (C) 2001 John Wiley & Sons, Ltd.