1000 resultados para 290299 Aerospace Engineering not elsewhere classified


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CDIO Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. The framework is consistent with conventional application to undergraduate programs and professional practice, but adapted for the preparatory context. As with the original CDIO framework with proficiency levels, this extended framework is informed by Bloom’s Educational Objectives. A proficiency evaluation of Queensland Study Authority’s Engineering Technology senior syllabus is demonstrated indicating proficiency levels embedded within this secondary school subject within a preparatory scope. Through this extended CDIO framework, students and faculty have greater awareness and access to tools to promote (i) student engagement in their own graduate capability development, (ii) faculty engagement in course and program design, through greater transparency and utility of the continuum of graduate capability development with associate levels of proficiency, and the context in which they exist in terms of pre-tertiary engineering studies; and (iii) course maintenance and quality audit methodology for the purpose of continuous improvement processes and program accreditation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A teaching and learning development project is currently under way at Queensland University of Technology to develop advanced technology videotapes for use with the delivery of structural engineering courses. These tapes consist of integrated computer and laboratory simulations of important concepts, and behaviour of structures and their components for a number of structural engineering subjects. They will be used as part of the regular lectures and thus will not only improve the quality of lectures and learning environment, but also will be able to replace the ever-dwindling laboratory teaching in these subjects. The use of these videotapes, developed using advanced computer graphics, data visualization and video technologies, will enrich the learning process of the current diverse engineering student body. This paper presents the details of this new method, the methodology used, the results and evaluation in relation to one of the structural engineering subjects, steel structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An essential challenge for organizations wishing to overcome informational silos is to implement mechanisms that facilitate, encourage and sustain interactions between otherwise disconnected groups. Using three case examples, this paper explores how Enterprise 2.0 technologies achieve such goals, allowing for the transfer of knowledge by tapping into the tacit and explicit knowledge of disparate groups in complex engineering organizations. The paper is intended to be a timely introduction to the benefits and issues associated with the use of Enterprise 2.0 technologies with the aim of achieving the positive outcomes associated with knowledge management

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Project focused group work is significant in developing social and personal skills as well as extending the ability to identify, formulate and solve engineering problems. As a result of increasing undergraduate class sizes, along with the requirement for many students to work part-time, group projects, peer and collaborative learning are seen as a fundamental part of engineering education. Group formation, connection to learning objectives and fairness of assessment has been widely reported as major issues that leave students dissatisfied with group project based units. Several strategies were trialled including a study of formation of groups by different methods across two engineering disciplines over the past 2 years. Other strategies involved a more structured approach to assessment practices of civil and electrical engineering disciplines design units. A confidential online teamwork management tool was used to collect and collate student self and peer assessment ratings and used for both formative feedback as well as assessment purposes. Student satisfaction and overall academic results in these subjects have improved since the introduction of these interventions. Both student and staff feedback highlight this approach as enhancing student engagement and satisfaction, improved student understanding of group roles, reducing number of dysfunctional groups whilst requiring less commitment of academic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper details the results of the first phase of an on-going research into the sociocultural factors that influence the supervision of higher degrees research (HDR) engineering students in the Faculty of Built Environment and Engineering (BEE) and Faculty of Science and Technology (FaST) at Queensland University of Technology. A quantitative analysis was performed on the results from an online survey that was administered to 179 engineering students. The study reveals that cultural barriers impact their progression and developing confidence in their research programs. We argue that in order to assist international and non-English speaking background (NESB) research students to triumph over such culturally embedded challenges in engineering research, it is important for supervisors to understand this cohort's unique pedagogical needs and develop intercultural sensitivity in their pedagogical practice in postgraduate research supervision. To facilitate this, the governing body (Office of Research) can play a vital role in not only creating the required support structures but also their uniform implementation across the board.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manuscript took a 'top down' approach to understanding survival of inhabitant cells in the ecosystem bone, working from higher to lower length and time scales through the hierarchical ecosystem of bone. Our working hypothesis is that nature “engineered” the skeleton using a 'bottom up' approach,where mechanical properties of cells emerge from their adaptation to their local me-chanical milieu. Cell aggregation and formation of higher order anisotropic struc- ture results in emergent architectures through cell differentiation and extracellular matrix secretion. These emergent properties, including mechanical properties and architecture, result in mechanical adaptation at length scales and longer time scales which are most relevant for the survival of the vertebrate organism [Knothe Tate and von Recum 2009]. We are currently using insights from this approach to har-ness nature’s regeneration potential and to engineer novel mechanoactive materials [Knothe Tate et al. 2007, Knothe Tate et al. 2009]. In addition to potential applications of these exciting insights, these studies may provide important clues to evolution and development of vertebrate animals. For instance, one might ask why mesenchymal stem cells condense at all? There is a putative advantage to self-assembly and cooperation, but this advantage is somewhat outweighed by the need for infrastructural complexity (e.g., circulatory systems comprised of specific differentiated cell types which in turn form conduits and pumps to overcome limitations of mass transport via diffusion, for example; dif-fusion is untenable for multicellular organisms larger than 250 microns in diameter. A better question might be: Why do cells build skeletal tissue? Once cooperatingcells in tissues begin to deplete local sources of food in their aquatic environment, those that have evolved a means to locomote likely have an evolutionary advantage. Once the environment becomes less aquarian and more terrestrial, self-assembled organisms with the ability to move on land might have conferred evolutionary ad-vantages as well. So did the cytoskeleton evolve several length scales, enabling the emergence of skeletal architecture for vertebrate animals? Did the evolutionary advantage of motility over noncompliant terrestrial substrates (walking on land) favor adaptations including emergence of intracellular architecture (changes in the cytoskeleton and upregulation of structural protein manufacture), inter-cellular con- densation, mineralization of tissues, and emergence of higher order architectures?How far does evolutionary Darwinism extend and how can we exploit this knowl- edge to engineer smart materials and architectures on Earth and new, exploratory environments?[Knothe Tate et al. 2008]. We are limited only by our ability to imagine. Ultimately, we aim to understand nature, mimic nature, guide nature and/or exploit nature’s engineering paradigms without engineer-ing ourselves out of existence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internationally the railway industry is facing a severe shortage of engineers with high level, relevant, profession and technical knowledge and abilities, in particular amongst engineers involved in the design, construction and maintenance of railway infrastructure. A unique graduate level program has been created to meet that global need via a fully online, distance education format. The development and operation of this Master of Engineering degree is proposed as a model of the process needed for the industry-relevance, flexible delivery, international networking, and professional development required for a successful graduate engineering program in the 21st century. In particular, the paper demonstrates how a mix of new and more familiar technologies are utilised through a variety of tasks to overcome the huge distances and multiple time zones that separate the participants across a growing number of countries, successfully achieving close and sustained interaction amongst the participants and railway experts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. AE is one of the several non-destructive testing (NDT) techniques currently used for structural health monitoring (SHM) of civil, mechanical and aerospace structures. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. Despite these advantages, several challenges still exist in successful application of AE monitoring. Accurate localization of AE sources, discrimination between genuine AE sources and spurious noise sources and damage quantification for severity assessment are some of the important issues in AE testing and will be discussed in this paper. Various data analysis and processing approaches will be applied to manage those issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper arises from our concern for the level of teaching of engineering drawing at tertiary institutions in Australia. Little attention is paid to teaching hand drawing and tolerancing. Teaching of engineering drawing is usually limited to computer-aided design (CAD) using AutoCAD or one of the solid-modelling packages. As a result, many engineering graduates have diffi culties in understanding how views are produced in different projection angles, are unable to produce engineering drawings of professional quality, or read engineering drawings, and unable to select fits and limits or surface roughness. In the Faculty of Built Environment and Engineering at the Queensland University of Technology new approaches to teaching engineering drawing have been introduced. In this paper the results of these innovative approaches are examined through surveys and other research methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There is little doubt that our engineering graduates’ ability to identify cultural differences and their potential to impact on engineering projects, and to work effectively with these differences is of key importance in the modern engineering practice. Within engineering degree programs themselves there is also a significant need to recognise the impact of changing student and staff profiles on what happens in the classroom. The research described in this paper forms part of a larger project exploring issues of intercultural competence in engineering. PURPOSE This paper presents an observational and survey study of undergraduate and postgraduate engineering students from four institutions working in groups on tasks with a purely technical focus, or with a cultural and humanitarian element. The study sought to explore how students rate their own intercultural competence and team process and whether any differences exist depending on the nature of the task they are working on. We also investigated whether any differences were evident between groups of first year, second year and postgraduate students. DESIGN/METHOD The study used the miniCQS instrument (Ang & Van Dyne, 2008) and a Bales Interaction Process Analysis based scale (Bales, 1950; Carney, 1976) to collect students self ratings of group process, task management, and cultural experience and behaviour. The Bales IPA was also used for coding video observations of students working in groups. Survey data were used to form descriptive variables to compare outcomes across the different tasks and contexts. Observations analysed in Nvivo were used to provide commentary and additional detail on the quantitative data. RESULTS The results of the survey indicated consistent mean scores on each survey item for each group of students, despite vastly different tasks, student backgrounds and educational contexts. Some small, statistically significant mean differences existed, offering some basic insights into how task and student group composition could affect self ratings. Overall though, the results suggest minimal shift in how students view group function and their intercultural experience, irrespective of differing educational experience. CONCLUSIONS The survey results, contrasted with group observations, indicate that either students are not translating their experience (in the group tasks) into critical self assessment of their cultural competence and teamwork, or that they become more critical of team performance and cultural competence as their competence in these areas grows, so their ratings remain consistent. Both outcomes indicate that students need more intensive guidance to build their critical self and peer assessment skills in these areas irrespective of their year level of study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The work described in this paper has emerged from an ALTC/OLT funded project, Exploring Intercultural Competency in Engineering. The project indentified many facets of culture and intercultural competence that go beyond a culture-as-nationality paradigm. It was clear from this work that resources were needed to help engineering educators introduce students to the complex issues of culture as they relate to engineering practice. A set of learning modules focussing on intercultural competence in engineering practice were developed early on in the project. Through the OLT project, these modules have been expanded into a range of resources covering various aspects of culture in engineering. Supporting the resources, an eBook detailing the ins and outs of intercultural competency has also been developed to assist engineering educators to embed opportunities for students to develop skills in unpacking and managing cross-cultural challenges in engineering practice. PURPOSE This paper describes the key principles behind the development of the learning modules, the areas they cover and the eBook developed to support the modules. The paper is intended as an introduction to the approaches and resources and extends an invitation to the community to draw from, and contribute to this initial work. DESIGN/METHOD A key aim of this project was to go beyond the culture-as-nationality approach adopted in much of the work around intercultural competency (Deardorff, 2011). The eBook explores different dimensions of culture such as workplace culture, culture’s influence on engineering design, and culture in the classroom. The authors describe how these connect to industry practice and explore what they mean for engineering education. The packaged learning modules described here have been developed as a matrix of approaches moving from familiar known methods through complicated activities relying to some extent on expert knowledge. Some modules draw on the concept of ‘complex un-order’ as described in the ‘Cynefin domains’ proposed by Kurtz and Snowden (2003). RESULTS Several of the modules included in the eBook have already been trialled at a variety of institutions. Feedback from staff has been reassuringly positive so far. Further trials are planned for second semester 2012, and version 1 of the eBook and learning modules, Engineering Across Cultures, is due to be released in late October 2012. CONCLUSIONS The Engineering Across Cultures eBook and learning modules provide a useful and ready to employ resource to help educators tackle the complex issue of intercultural competency in engineering education. The book is by no means exhaustive, and nor are the modules, they instead provide an accessible, engineering specific guide to bringing cultural issues into the engineering classroom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The engineering profession in Australia has failed to attract young women for the last decade or so despite all the effort that have gone into promoting engineering as a preferred career choice for girls. It is a missed opportunity for the profession to flourish as a heterogeneous team. Many traditional initiatives and programs have failed to make much impact or at best incremental improvement into attracting and retaining more women in the profession. The reasons why girls and young women in most parts of the world show little interest in engineering haven't changed, despite all the efforts to address them, the issue proposed here in this paper is with the perceptions of engineering in the community and the confidence to pursue it. This gender imbalance is detrimental for the engineering profession, and hence an action-based intervention strategy was devised by the Women in Engineering Qld Chapter of Engineers Australia in 2012 to change the perceptions of school girls by redesigning the engagement strategy and key messages. As a result, the “Power of Engineering Inc” (PoE) was established as a not-for-profit organisation, and is a collaborative effort between government, schools, universities, and industry. This paper examines a case study in changing the perceptions of year 9 and 10 school girls towards an engineering career. PURPOSE To evaluate and determine the effectiveness of an intervention in changing the perceptions of year 9 and 10 school girls about engineering career options, but specifically, “What were their perceptions of engineering before today and have those perceptions changed?” DESIGN/METHOD The inaugural Power of Engineering (PoE) event was held on International Women’s Day, Thursday 8 March 2012 and was attended by 131 high school female students (year 9 and 10) and their teachers. The key message of the day was “engineering gives you the power to change the world”. A questionnaire was conducted with the participating high school female students, collecting both quantitative and qualitative data. The survey instrument has not been validated. RESULTS The key to the success of the event was as a result of collaboration between all participants involved and the connection created between government, schools, universities and industry. Of the returned surveys (109 of 131), 91% of girls would now consider a career in engineering and 57% who had not considered engineering before the day would now consider a career in engineering. Data collected found significant numbers of negative and varying perceptions about engineering careers prior to the intervention. CONCLUSIONS The evidence in this research suggests that the intervention assisted in changing the perceptions of year 9 and 10 female school students towards engineering as a career option. Whether this intervention translates into actual career selection and study enrolment is to be determined. In saying this, the evidence suggests that there is a critical and urgent need for earlier interventions prior to students selecting their subjects for year 11 and 12. This intervention could also play its part in increasing the overall pool of students engaged in STEM education.