952 resultados para 230109 Functional Analysis
Resumo:
An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^
Resumo:
Human heparin/heparan sulfate interacting protein/L29 (HIP/L29) is a heparin/heparan sulfate (Hp/HS) binding protein found in many adult human tissues. Potential functions of this protein are promotion of embryo adhesion, modulation of blood coagulation, and control of cell growth. While these activities are diverse, the ability of human HIP/L29 to interact with Hp/HS at the cell surface may be a unifying mechanism of action since Hp/HS influences all of these processes. A murine ortholog has been identified that has 78.8% homology over the entire sequence and identity over the N-terminal 64 amino acids when compared to human HIP/L29. Northern, Western, and immunohistochemical analysis shows that murine HIP/L29 mRNA and protein are expressed in a tissue specific manner. Murine HIP/L29 is enriched in the membrane fraction of NmuMG cells where it is eluted with high salt, suggesting that it is a peripheral membrane protein. The ability of murine HIP/L29 to bind Hp is verified by studies using native and recombinant forms of murine HIP/L29. A synthetic peptide (HIP peptide-2) derived from the identical N-terminal region of HIP/L29 proteins was tested for the ability to bind Hp and support cell adhesion. This peptide was chosen because it conforms to a proposed consensus sequence for Hp/HS binding peptides. HIP peptide-2 binds Hp in a dose-dependent, saturable, and selective manner and supports Hp-dependent cell adhesion. However, a scrambled form of this peptide displayed similar activities indicating a lack of peptide sequence specificity required for activity. Lastly, an unbiased approach was used to identify sequences within human and mouse HIP/L29 proteins necessary for Hp/HS binding. A panel of recombinant proteins was made that collectively are deficient in every human HIP/L29 domain. The activities of these deletion mutants and recombinant murine HIP/L29 were compared to the activity of recombinant human HIP/L29 in a number of assays designed to look at differences in the ability to bind Hp/HS. These studies suggest that each domain within human HIP/L29 is important for binding to Hp/HS and divergences in the C-terminus of human and mouse HIP/L29 account for a decrease in murine HIP/L29 affinity for Hp/HS. It is apparent that multiple domains within human and mouse HIP/L29 contribute to the function of Hp/HS binding. The interaction of multiple HIP/L29 domains with Hp/HS will influence the biological activity of HIP/L29 proteins. ^
Resumo:
Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^
Resumo:
Sox9 is a Sry-related HMG-domain containing transcription factor. Lines of evidence suggest that Sox9 has a potential role in skeletal development. During mouse development, Sox9 is predominantly expressed in all chondroprogenitors and differentiated chondrocytes, throughout the deposition of cartilage matrix. Mutations in one allele of SOX9 in humans result in campomelic dysplasia (CD), a skeletal dysplasia. syndrome characterized by the bowing of long bones. Moreover, Sox9 binds to and activates chondrocyte-specific enhancers in Col2a1 and Col11a2 genes. To further investigate the function of Sox9 in chondrogenesis, we analyzed chimeras derived from Sox9 heterozygous and homozygous null embryonic stem (ES) cells. In mouse chimeras, Sox9 −/− cells were excluded from all cartilages and did not express chondrocyte-specific genes. The segregation occurred during mesenchymal condensation. No cartilages developed in teratocarcinomas derived from Sox9 −/− ES cells. Mice heterozygous for the Sox9 mutation died neonatally and exhibited skeletal abnormalities resembling those of the CD patients. The Sox9 +/− mutants had a cleft palate and hypoplasia of scapula, pelvis and other skeletal structures derived by endochondral ossification. Bending of the radius, ulna and tibia cartilage was prominent at embryonic day 14.5 (E14.5). At E12.5 many pre-cartilaginous condensations were already defective. Advanced ossification was observed and the hypertrophic zone was enlarged in the growth plates, suggesting that Sox9 also regulates hypertrophic chondrocyte differentiation. Our results identify Sox9 as the first essential regulator of chondrocyte differentiation, which plays multiple roles in chondrogenesis. ^
Resumo:
Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^
Resumo:
Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^
Resumo:
Los factores de transcripción (FTs) son reguladores clave de la expresión génica en todos los organismos. En eucariotas los FTs con frecuencia están representados por miembros funcionalmente redundantes de familias génicas de gran tamaño. La sobreexpresión de FTs puede representar una herramienta para revelar las funciones biológicas de FTs redundantes en plantas; sin embargo, la sobreexpresión constitutiva de FTs con frecuencia conlleva diversos defectos en el desarrollo, impidiendo su caracterización funcional. Sin embargo, aproximaciones de sobreexpresión condicional podrían ayudar a solventar este problema. En el consorcio TRANSPLANTA, en el que participan varios laboratorios del CBGP, hemos generado una colección de líneas transgénicas de Arabidopsis, cada una de las cuales expresa un FT bajo el control de un promotor inducible por ?estradiol. Hasta el momento se han generado 1636 líneas homocigotas independientes que corresponden a 634 FTs diferentes, lo que representa una media de 2,6 líneas por cada FT. Como confirmación de la utilidad de esta herramienta, el tratamiento con ?estradiol de líneas que expresaban condicionalmente FTs provoca alteraciones fenotípicas tales como proliferación de pelos radiculares, senescencia inducida por oscuridad, acumulación de antocianinas y enanismo, y que corroboran fenotipos previamente descritos debidos a la sobreexpresión de dichos FTs. Rastreos realizados posteriormente con otras líneas TRANSPLANTA han permitido la identificación de FTs implicados en diferentes procesos biológicos de plantas, confirmando que la colección es una herramienta valiosa para la caracterización funcional de FTs. Las semillas de las líneas TRANSPLANTA han sido depositadas en el Nottingham Arabidopsis Stock Centre para su distribución posterior.
Resumo:
Se analizan las estrategias y la estructura discursiva de las conferencias del corpus MICASE (El corpus de inglés académico oral de la Universidad de Michigan) desde una perspectiva dual: el enfoque sistémico-funcional y el estudio de Young sobre conferencias. Los resultados demuestran que las conferencias son un género complejo que no solo incluye el contenido ideacional sino diversas evaluaciones de los profesores sobre los temas tratados. Los profesores usan fuentes académicas, convenciones formales y un estilo idiosincrático. También muestran su punto de vista mediante el uso de marcadores modales y adverbios que varían en función de las distintos tipos de conferencia (Biología/ Ciencias de la Salud, Arte y Humanidades, Ciencias Sociales/ Educación).
Resumo:
Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.
Resumo:
Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a β–estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon β–estradiol treatment. As a proof of concept for the exploitation of this resource, β–estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl–root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.
Resumo:
High endothelial venules (HEV) are specialized postcapillary venules found in lymphoid organs and chronically inflamed tissues that support high levels of lymphocyte extravasation from the blood. One of the major characteristics of HEV endothelial cells (HEVEC) is their capacity to incorporate large amounts of sulfate into sialomucin-type counter-receptors for the lymphocyte homing receptor L-selectin. Here, we show that HEVEC express two functional classes of sulfate transporters defined by their differential sensitivity to the anion-exchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS), and we report the molecular characterization of a DIDS-resistant sulfate transporter from human HEVEC, designated SUT-1. SUT-1 belongs to the family of Na+-coupled anion transporters and exhibits 40–50% amino acid identity with the rat renal Na+/sulfate cotransporter, NaSi-1, as well as with the human and rat Na+/dicarboxylate cotransporters, NaDC-1/SDCT1 and NaDC-3/SDCT2. Functional expression studies in cRNA-injected Xenopus laevis oocytes showed that SUT-1 mediates high levels of Na+-dependent sulfate transport, which is resistant to DIDS inhibition. The SUT-1 gene mapped to human chromosome 7q33. Northern blotting analysis revealed that SUT-1 exhibits a highly restricted tissue distribution, with abundant expression in placenta. Reverse transcription–PCR analysis indicated that SUT-1 and the diastrophic dysplasia sulfate transporter (DTD), one of the two known human DIDS-sensitive sulfate transporters, are coexpressed in HEVEC. SUT-1 and DTD could correspond, respectively, to the DIDS-resistant and DIDS-sensitive components of sulfate uptake in HEVEC. Together, these results demonstrate that SUT-1 is a distinct human Na+-coupled sulfate transporter, likely to play a major role in sulfate incorporation in HEV.
Resumo:
Connector enhancer of KSR (CNK) is a multidomain protein required for RAS signaling. Its C-terminal portion (CNKC-term) directly binds to RAF. Herein, we show that the N-terminal portion of CNK (CNKN-term) strongly cooperates with RAS, whereas CNKC-term efficiently blocks RAS- and RAF-dependent signaling when overexpressed in the Drosophila eye. Two effector loop mutants of RASV12, S35 and C40, which selectively activate the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase pathways, respectively, do not cooperate with CNK. However, a strong cooperation is observed between CNK and RASV12G37, an effector loop mutant known in mammals to activate specifically the RAL pathway. We have identified two domains in CNKN-term that are critical for cooperation with RAS. Our results suggest that CNK functions in more than one pathway downstream of RAS. CNKc-term seems to regulate RAF, a component of the MAPK pathway, whereas CNKN-term seems to be involved in a MAPK-independent pathway.
Resumo:
LEF-1 (lymphoid enhancer-binding factor 1) is a cell type-specific member of the family of high mobility group (HMG) domain proteins that recognizes a specific nucleotide sequence in the T cell receptor (TCR) α enhancer. In this study, we extend the analysis of the DNA-binding properties of LEF-1 and examine their contributions to the regulation of gene expression. We find that LEF-1, like nonspecific HMG-domain proteins, can interact with irregular DNA structures such as four-way junctions, albeit with lower efficiency than with specific duplex DNA. We also show by a phasing analysis that the LEF-induced DNA bend is directed toward the major groove. In addition, we find that the interaction of LEF-1 with a specific binding site in circular DNA changes the linking number of DNA and unwinds the double helix. Finally, we identified two nucleotides in the LEF-1-binding site that are important for protein-induced DNA bending. Mutations of these nucleotides decrease both the extent of DNA bending and the transactivation of the TCRα enhancer by LEF-1, suggesting a contribution of protein-induced DNA bending to the function of TCRα enhancer.
Resumo:
Ebola virus causes hemorrhagic fever in humans and nonhuman primates, resulting in mortality rates of up to 90%. Studies of this virus have been hampered by its extraordinary pathogenicity, which requires biosafety level 4 containment. To circumvent this problem, we developed a novel complementation system for functional analysis of Ebola virus glycoproteins. It relies on a recombinant vesicular stomatitis virus (VSV) that contains the green fluorescent protein gene instead of the receptor-binding G protein gene (VSVΔG*). Herein we show that Ebola Reston virus glycoprotein (ResGP) is efficiently incorporated into VSV particles. This recombinant VSV with integrated ResGP (VSVΔG*-ResGP) infected primate cells more efficiently than any of the other mammalian or avian cells examined, in a manner consistent with the host range tropism of Ebola virus, whereas VSVΔG* complemented with VSV G protein (VSVΔG*-G) efficiently infected the majority of the cells tested. We also tested the utility of this system for investigating the cellular receptors for Ebola virus. Chemical modification of cells to alter their surface proteins markedly reduced their susceptibility to VSVΔG*-ResGP but not to VSVΔG*-G. These findings suggest that cell surface glycoproteins with N-linked oligosaccharide chains contribute to the entry of Ebola viruses, presumably acting as a specific receptor and/or cofactor for virus entry. Thus, our VSV system should be useful for investigating the functions of glycoproteins from highly pathogenic viruses or those incapable of being cultured in vitro.
Resumo:
The yeast transport GTPase Ypt6p is dispensable for cell growth and secretion, but its lack results in temperature sensitivity and missorting of vacuolar carboxypeptidase Y. We previously identified four yeast genes (SYS1, 2, 3, and 5) that on high expression suppressed these phenotypic alterations. SYS3 encodes a 105-kDa protein with a predicted high α-helical content. It is related to a variety of mammalian Golgi-associated proteins and to the yeast Uso1p, an essential protein involved in docking of endoplasmic reticulum–derived vesicles to the cis-Golgi. Like Uso1p, Sys3p is predominatly cytosolic. According to gel chromatographic, two-hybrid, and chemical cross-linking analyses, Sys3p forms dimers and larger protein complexes. Its loss of function results in partial missorting of carboxypeptidase Y. Double disruptions of SYS3 and YPT6 lead to a significant growth inhibition of the mutant cells, to a massive accumulation of 40- to 50-nm vesicles, to an aggravation of vacuolar protein missorting, and to a defect in α-pheromone processing apparently attributable to a perturbation of protease Kex2p cycling between the Golgi and a post-Golgi compartment. The results of this study suggest that Sys3p, like Ypt6p, acts in vesicular transport (presumably at a vesicle-docking stage) between an endosomal compartment and the most distal Golgi compartment.