997 resultados para 1088
Resumo:
This paper considers VECMs for variables exhibiting cointegration and common features in the transitory components. While the presence of cointegration between the permanent components of series reduces the rank of the long-run multiplier matrix, a common feature among the transitory components leads to a rank reduction in the matrix summarizing short-run dynamics. The common feature also implies that there exists linear combinations of the first-differenced variables in a cointegrated VAR that are white noise and traditional tests focus on testing for this characteristic. An alternative, however, is to test the rank of the short-run dynamics matrix directly. Consequently, we use the literature on testing the rank of a matrix to produce some alternative test statistics. We also show that these are identical to one of the traditional tests. The performance of the different methods is illustrated in a Monte Carlo analysis which is then used to re-examine an existing empirical study. Finally, this approach is applied to provide a check for the presence of common dynamics in DSGE models.
Resumo:
This article describes a method for making a spectroscope from scrap materials, i.e. a fragment of compact disc, a cardboard box, a tube and a digital camera to record the spectrum. An image processing program such as ImageJ can be used to calculate the wavelength of emission and absorption lines from the digital photograph. Multiple images of a spectrum can be stacked to reduce random noise, enabling spectra of faint objects to be obtained. Some basic experiments are described, such as viewing the spectrum produced by various types of lamp and the Sun. © 2012 IOP Publishing Ltd.
Resumo:
The Moon appears to be much larger closer to the horizon than when higher in the sky. This is called the ‘Moon Illusion’ since the observed size of the Moon is not actually larger when the Moon is just above the horizon. This article describes a technique for verifying that the observed size of the Moon in not larger on the horizon. The technique can be easily performed in a high school teaching environment. Moreover, the technique demonstrates the surprising fact that the observed size of the Moon is actually smaller on the horizon due to atmospheric refraction. For the purposes of this paper, several images of the moon were taken with the Moon close to the horizon and close to the zenith. Images were processed using a free program called ImageJ. The Moon was found to be 5.73 ±0.04% smaller in area on the horizon then at the zenith.
Resumo:
The purpose of this study was to investigate the effect of very small air gaps (less than 1 mm) on the dosimetry of small photon fields used for stereotactic treatments. Measurements were performed with optically stimulated luminescent dosimeters (OSLDs) for 6 MV photons on a Varian 21iX linear accelerator with a Brainlab μMLC attachment for square field sizes down to 6 mm × 6 mm. Monte Carlo simulations were performed using EGSnrc C++ user code cavity. It was found that the Monte Carlo model used in this study accurately simulated the OSLD measurements on the linear accelerator. For the 6 mm field size, the 0.5 mm air gap upstream to the active area of the OSLD caused a 5.3 % dose reduction relative to a Monte Carlo simulation with no air gap. A hypothetical 0.2 mm air gap caused a dose reduction > 2 %, emphasizing the fact that even the tiniest air gaps can cause a large reduction in measured dose. The negligible effect on an 18 mm field size illustrated that the electronic disequilibrium caused by such small air gaps only affects the dosimetry of the very small fields. When performing small field dosimetry, care must be taken to avoid any air gaps, as can be often present when inserting detectors into solid phantoms. It is recommended that very small field dosimetry is performed in liquid water. When using small photon fields, sub-millimetre air gaps can also affect patient dosimetry if they cannot be spatially resolved on a CT scan. However the effect on the patient is debatable as the dose reduction caused by a 1 mm air gap, starting out at 19% in the first 0.1 mm behind the air gap, decreases to < 5 % after just 2 mm, and electronic equilibrium is fully re-established after just 5 mm.
Resumo:
Dual-mode vibration of nanowires has been reported experimentally through actuation of the nanowire at its resonance frequency, which is expected to open up a variety of new modalities for the NEMS that could operate in the nonlinear regime. In the present work, we utilize large scale molecular dynamics simulations to investigate the dual-mode vibration of <110> Ag nanowires with triangular, rhombic and truncated rhombic cross-sections. By incorporating the generalized Young-Laplace equation into Euler-Bernoulli beam theory, the influence of surface effects on the dual-mode vibration is studied. Due to the different lattice spacing in principal axes of inertia of the {110} atomic layers, the NW is also modeled as a discrete system to reveal the influence from such specific atomic arrangement. It is found that the <110> Ag NW will under a dual-mode vibration if the actuation direction is deviated from the two principal axes of inertia. The predictions of the two first mode natural frequencies by the classical beam model appear underestimated comparing with the MD results, which are found to be enhanced by the discrete model. Particularly, the predictions by the beam theory with the contribution of surface effects are uniformly larger than the classical beam model, which exhibit better agreement with MD results for larger cross-sectional size. However, for ultrathin NWs, current consideration of surface effects is still experiencing certain inaccuracy. In all, for all different cross-sections, the inclusion of surface effects is found to reduce the difference between the two first mode natural frequencies. This trend is observed consistent with MD results. This study provides a first comprehensive investigation on the dual-mode vibration of <110> oriented Ag NWs, which is supposed to benefit the applications of NWs that acting as a resonating beam.
Resumo:
Cell invasion involves a population of cells that migrate along a substrate and proliferate to a carrying capacity density. These two processes, combined, lead to invasion fronts that move into unoccupied tissues. Traditional modelling approaches based on reaction–diffusion equations cannot incorporate individual–level observations of cell velocity, as information propagates with infinite velocity according to these parabolic models. In contrast, velocity jump processes allow us to explicitly incorporate individual–level observations of cell velocity, thus providing an alternative framework for modelling cell invasion. Here, we introduce proliferation into a standard velocity–jump process and show that the standard model does not support invasion fronts. Instead, we find that crowding effects must be explicitly incorporated into a proliferative velocity–jump process before invasion fronts can be observed. Our observations are supported by numerical and analytical solutions of a novel coupled system of partial differential equations, including travelling wave solutions, and associated random walk simulations.
Resumo:
Authigenic illite-smectite and chlorite in reservoir sandstones from several Pacific rim sedimentary basins in Australia and New Zealand have been examined using an Electroscan Environmental Scanning Electron Microscope (ESEM) before, during, and after treatment with fresh water and HCl, respectively. These dynamic experiments are possible in the ESEM because, unlike conventional SEMs that require a high vacuum in the sample chamber (10-6 torr), the ESEM will operate at high pressures up to 20 torr. This means that materials and processes can be examined at high magnifications in their natural states, wet or dry, and over a range of temperatures (-20 to 1000 degrees C) and pressures. Sandstones containing the illite-smectite (60-70% illite interlayers) were flushed with fresh water for periods of up to 12 hours. Close examination of the same illite-smectite lines or filled pores, both before and after freshwater treatments, showed that the morphology of the illite-smectite was not changed by prolonged freshwater treatment. Chlorite-bearing sandstones (Fe-rich chlorite) were reacted with 1M to 10M HCl at temperatures of up to 80 degrees C and for periods of up to 48 hours. Before treatment the chlorites showed typically platy morphologies. After HCl treatment the chlorite grains were coated with an amorphous gel composed of Ca, Cl, and possibly amorphous Si, as determined by EDS analyses on the freshly treated rock surface. Brief washing in water removed this surface coating and revealed apparently unchanged chlorite showing no signs of dissolution or acid attack. However, although the chlorite showed no morphological changes, elemental analysis only detected silicon and oxygen.
Resumo:
In this paper, the authors combine Pierre Bourdieu’s concept of hysteresis (the ‘fish out of water’ experience) with the discourse historical approach to critical discourse analysis (CDA) as a theoretical and analytical framework through which they examine specific moments in the schooling experiences of one refugee student and one international student, both enrolled in post-compulsory education in Australian mainstream secondary schools. We examine specific moments – as narrated by these students during interviews – in which these students can be described as ‘fish out of water’. As such, this paper takes up the concerns of researchers who call for an examination of the lived geographies and the everyday lives of individual students in mainstream schools. We find that our students’ habitus, conditioned by their previous schooling experiences in their home countries, did not match their new Australian schools, resulting in frustration with, and alienation from, their mainstream schools. However, we also note that schools, too, need to adapt and adjust their habitus to the new multicultural world, in which there are international and refugee students among their usual cohort of mainstream students.
Resumo:
In this paper, we analyse the impact of a (small) heterogeneity of jump type on the most simple localized solutions of a 3-component FitzHugh–Nagumo-type system. We show that the heterogeneity can pin a 1-front solution, which travels with constant (non-zero) speed in the homogeneous setting, to a fixed, explicitly determined, distance from the heterogeneity. Moreover, we establish the stability of this heterogeneous pinned 1-front solution. In addition, we analyse the pinning of 1-pulse, or 2-front, solutions. The paper is concluded with simulations in which we consider the dynamics and interactions of N-front patterns in domains with M heterogeneities of jump type (N = 3, 4, M ≥ 1).
Resumo:
To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu 2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca 1-xYbxCu2Oy, form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)Ox and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO2 = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO2 = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO2 = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi 2Sr2Ca1-xYbxCu2O y thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest Tc(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O2, respectively.
Resumo:
Different types of HTS joints of Bi-2212/Ag tapes and laminates, which are fabricated by dip-coating and partial-melt processes, have been investigated. All joints are prepared using green single and laminated tapes and according to the scheme: coating-joining-processing. The heat treated tapes have critical current (Ic) between 7 and 27 A, depending on tape thickness and the number of Bi-2212 ceramic layers in laminated tapes. It is found that the current transport properties of joints depend on the type of laminate, joint configuration and joint treatment, Ic losses in joints of Bi-2212 tapes and laminates are attributed to defects in their structure, such as pores, secondary phases and misalignment of Bi-2212 grains near the Ag edges. By optimizing joint configuration, current transmission up to 100% is achieved for both single tapes and laminated tapes.
Resumo:
Superconducting Bi-2212 tapes and laminates are fabricated by a combination of dip-coating and partial melt processing. The heat treated tapes have critical current densities (Jc) up to 11 kAcm -2. We investigate the degradation of critical current (Ic) during bending experiments for both single tapes and tapes with laminate structure. Although degradation of Ic is observed in both forms, the characteristics of the degradation differ. It is determined that laminated tapes perform better than single tapes when critical current is measured against bending radius, and laminated tapes tolerate a higher strain for a given reduction in critical current. It is found that increasing the number of Bi-2212 layers increases the total Ic of the laminated tape, but degradation of critical current is more pronounced during bending because of the increased total thickness of the laminate structure. It is also found that addition of silver to the Bi-2212 layers reduces critical current degradation during bending for both tapes and laminates.
Resumo:
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.
Resumo:
Compared to conventional metal-foil strain gauges, nanocomposite piezoresistive strain sensors have demonstrated high strain sensitivity and have been attracting increasing attention in recent years. To fulfil their ultimate success, the performance of vapor growth carbon fiber (VGCF)/epoxy nanocomposite strain sensors subjected to static cyclic loads was evaluated in this work. A strain-equivalent quantity (resistance change ratio) in cantilever beams with intentionally induced notches in bending was evaluated using the conventional metal-foil strain gauges and the VGCF/epoxy nanocomposite sensors. Compared to the metal-foil strain gauges, the nanocomposite sensors are much more sensitive to even slight structural damage. Therefore, it was confirmed that the signal stability, reproducibility, and durability of these nanocomposite sensors are very promising, leading to the present endeavor to apply them for static structural health monitoring.