995 resultados para 090699 Electrical and Electronic Engineering not elsewhere classified
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.
Resumo:
This paper attempts a state-of-the-art summary of research into thunderstorm wind fields from an engineering perspective. The characteristics of thunderstorms and the two extreme wind events-tornadoes and downbursts-spawn by thunderstorms are described. The significant differences from traditional boundary layer flows are highlighted. The importance of thunderstorm gusts in the worldwide database of extreme wind events is established. Physical simulations of tornadoes and downbursts are described and discussed leading to the recommendation that Wind Engineering needs to focus more resources on the fundamental issue - What is the flow structure in the strongest winds? © 2002 Published by Elsevier Science Ltd.
Resumo:
A new cloud-point extraction and preconcentration method, using a cationic, surfactant, Aliquat-336 (tricaprylyl-methy;ammonium chloride), his-been developed for the determination of cyanobacterial toxins, microcystins, in natural waters. Sodium sulfate was used to induce phase separation at 25 degreesC. The phase behavior of Aliquat-336 with respect to concentration of Na2SO4 was studied. The cloud-point system revealed a very high phase volume ratio compared to other established systems of nonionic, anionic, and cationic surfactants: At pH 6-7, it showed an outstanding selectivity in ahalyte extraction for anionic species. Only MC-LR and MC-YR, which are known to be predominantly anionic, were extracted (with averaged recoveries of 113.9 +/- 9% and 87.1 +/- 7%, respectively). MC-RR, which is likely to be amphoteric at the above pH range, was. not cle tectable in.the extract. Coupled to HPLC/UV separation and detection, the cloud-point extraction method (with 2.5 mM Aliquat-336 and 75 mM Na2SO4 at 25 degreesC) offered detection limits of 150 +/- 7 and 470 +/- 72 pg/mL for MC-LR and MC-YR, respectively, in 25 mL of deionized water. Repeatability of the method was 7.6% for MC-LR and 7.3% for MC-YR: The cloud-point extraction process can be. completed within 10-15 min with no cleanup steps required. Applicability of the new method to the determination of microcystins in real samples was demonstrated using natural surface waters, collected from a local river and a local duck pond spiked with realistic. concentrations of microcystins. Effects of salinity and organic matter (TOC) content in the water sample on the extraction efficiency were also studied.
Resumo:
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PODS and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warrented into possible anthropogenic sources in areas where natural PCDD formation has been suggested.
Resumo:
OBJECTIVE: To investigate the prevalence and predictors of weight maintenance over time in a large sample of young Australian women. DESIGN: This population study examined baseline and 4y follow-up data from the cohort of young women participating in the Australian Longitudinal Study on Women's Health. SUBJECTS: A total of 8726 young women aged 18 - 23y at baseline. MEASURES: Height, weight and body mass index (BMI); physical activity; time spent sitting; selected eating behaviours (eg dieting, disordered eating, takeaway food consumption); cigarette smoking, alcohol consumption; parity; and socio-demographic characteristics. RESULTS: Only 44% of the women reported their BMI at follow-up to be within 5% of their baseline BMI (maintainers); 41% had gained weight and 15% had lost weight. Weight maintainers were more likely to be in managerial or professional occupations; to have never married; to be currently studying; and not to be mothers. Controlling for sociodemographic factors, weight maintainers were more likely to be in a healthy weight range at baseline, and to report that they spent less time sitting, and consumed less takeaway food, than women who gained weight. CONCLUSIONS: Fewer than half the young women in this community sample maintained their weight over this 4y period in their early twenties. Findings of widespread weight gain, particularly among those already overweight, suggest that early adulthood, which is a time of significant life changes for many women, may be an important time for implementing strategies to promote maintenance of healthy weight. Strategies which encourage decreased sitting time and less takeaway food consumption may be effective for encouraging weight maintenance at this life stage.
Resumo:
In order to understand the growth and compaction behaviour of chalcopyrite (copper concentrate), batch granulation tests were carried out using a rotating drum. The granule growth exhibited induction-type behaviour, as defined by Iveson and Litster [AIChE J. 44 (1998) 15 10]. There were two consecutive stages during granulation: the induction stage, during which the granules are gradually being compacted and little or no growth occurs, and the rapid growth stage, which starts when the granules have become surface wet and are rapidly growing. In agreement with earlier findings. an increased amount of binder liquid shortened the induction time. The compaction behaviour was also investigated. A displaced volume method was adopted to determine the porosity of the granules. It was shown that this technique had a limitation as it was unable to detect the reduction of the volumes of the granule pores after the granules had become surface wet. Due to this, some of the measurements were not suited for fitting a three-parameter empirical model. Attempts were made to determine whether the rapid growth stage started with the pore saturation exceeding a certain critical value, but due to the scatter in the porosity measurements and the fact that some of the measurements could not be used, it was not possible to determine a critical pore saturation, However, the porosity measurements clearly demonstrated that the porosity of the granules decreased during the induction stage of an experiment and that when rapid growth occurred, the granules had a pore saturation was around 0.85. This value was slightly lower than unity, which is most likely due to trapped air bubbles. (C) 2002 Published by Elsevier Science B.V.
Resumo:
A novel and simple method for determination of micropore network connectivity of activated carbon using liquid phase adsorption is presented in this paper. The method is applied to three different commercial carbons with eight different liquid phase adsorptives as probes. The effect of the pore network connectivity on the prediction of multicomponent adsorption equilibria was also studied. For this purpose, the Ideal Adsorbed Solution Theory (IAST) was used in conjuction with the modified DR single component isotherm. The results of comparison with experimental data show that incorporation of the connectivity, and consideration of percolation processes associated with the different molecular sizes of the adsorptives in the mixture, can improve the performance of the IAST in predicting multicomponent adsorption equilibria.
Resumo:
Ultrasonic speed of propagation and attenuation were investigated as a function of absorbed radiation dose in PAG and MAGIC polymer gel dosimeters. Both PAG and MAGIC gel dosimeters displayed a dependence of ultrasonic parameters on absorbed dose with attenuation displaying significant changes in the dose range investigated. The ultrasonic attenuation dose sensitivity at 4 MHz in MAGIC gels was determined to be 4.7 +/- 0.3 dB m(-1) Gy(-1) and for PAG 3.9 +/- 0.3 dB m(-1) Gy(-1). Ultrasonic speed dose sensitivities were 0.178 +/- 0.006 m s(-1) Gy(-1) for MAGIC gel and -0.44 +/- 0.02 m s(-1) Gy(-1) for PAG. Density and compressional elastic modulus were investigated to explain the different sensitivities of ultrasonic speed to radiation for PAG and MAGIC gels. The different sensitivities were found to be due to differences in the compressional elastic modulus as a function of dose for the two formulations. To understand the physical phenomena underlying the increase in ultrasonic attenuation with dose, the viscoelastic properties of the gels were studied. Results suggest that at ultrasonic frequencies, attenuation in polymer gel dosimeters is primarily due to volume viscosity. It is concluded that ultrasonic attenuation significantly increases with absorbed dose. Also, the ultrasonic speed in polymer gel dosimeters is affected by changes in dosimeter elastic modulus that are likely to be a result of polymerization. It is suggested that ultrasound is a sufficiently sensitive technique for polymer gel dosimetry.
Resumo:
A detailed analysis procedure is described for evaluating rates of volumetric change in brain structures based on structural magnetic resonance (MR) images. In this procedure, a series of image processing tools have been employed to address the problems encountered in measuring rates of change based on structural MR images. These tools include an algorithm for intensity non-uniforniity correction, a robust algorithm for three-dimensional image registration with sub-voxel precision and an algorithm for brain tissue segmentation. However, a unique feature in the procedure is the use of a fractional volume model that has been developed to provide a quantitative measure for the partial volume effect. With this model, the fractional constituent tissue volumes are evaluated for voxels at the tissue boundary that manifest partial volume effect, thus allowing tissue boundaries be defined at a sub-voxel level and in an automated fashion. Validation studies are presented on key algorithms including segmentation and registration. An overall assessment of the method is provided through the evaluation of the rates of brain atrophy in a group of normal elderly subjects for which the rate of brain atrophy due to normal aging is predictably small. An application of the method is given in Part 11 where the rates of brain atrophy in various brain regions are studied in relation to normal aging and Alzheimer's disease. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.
Resumo:
The pore structure formation in bentonite, pillared with a mixed sol of silicon and titanium hydroxides and treated subsequently with quaternary ammonium surfactants, is investigated. The surfactant micelles act as a template, similar to their role in MCM41 synthesis. Because both the surfactant micelles and the sol particles are positively charged, it is greatly favorable for them to form meso-phase assembles in the galleries between the clay layers that bear negative charges. Besides, the sol particles do not bond the clay layers strongly as other kinds of pillar precursors do, so that the treatment with surfactants can result in radical structure changes in sol-pillared clays. This allows us to tailor the pore structure of these porous clays by choice of surfactant. The surfactant treatment also results in profound increases in porosity and improvement in thermal stability. Therefore, the product porous clays have great potential to be Used to deal with large molecules or at high operating temperatures. We also found that titanium in these samples is highly dispersed in the silica matrix rather than existing in the form of small particles of pure titania. Such highly dispersed Ti active centers may offer excellent activities for catalytic oxidation reactions such as alkanes into alcohols and ketones.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.