966 resultados para 020604 Quantum Optics
Resumo:
Knowledge about nonlinear absorption spectra of materials used in photonic devices is of paramount importance in determining their optimum operation wavelengths. In this work, we have investigated the two-photon absorption (2PA) degenerate cross-section spectrum for perylene derivatives using the Z-scan technique with femtosecond laser pulses. All perylene derivatives studied present large 2PA cross-sections, only comparable to the best ones reported in the literature. The results achieved in the present investigation indicate perylene derivatives as promising materials for two-photon applications. ©2005 Optical Society of America.
Resumo:
A major challenge in cancer radiotherapy is to deliver a lethal dose of radiation to the target volume while minimizing damage to the surrounding normal tissue. We have proposed a model on how treatment efficacy might be improved by interfering with biological responses to DNA damage using exogenous electric fields as a strategy to drastically reduce radiation doses in cancer therapy. This approach is demonstrated at this Laboratory through case studies with prokaryotes (bacteria) and eukaryotes (yeast) cells, in which cellkilling rates induced by both gamma radiation and exogenous electric fields were measured. It was found that when cells exposed to gamma radiation are immediately submitted to a weak electric field, cell death increases more than an order of magnitude compared to the effect of radiation alone. This finding suggests, although does not prove, that DNA damage sites are reached and recognized by means of long-range electric DNA-protein interaction, and that exogenous electric fields could destructively interfere with this process. As a consequence, DNA repair is avoided leading to massive cell death. Here we are proposing the use this new technique for the design and construction of novel radiotherapy facilities associated with linac generated gamma beams under controlled conditions of dose and beam intensity.
Resumo:
Unlike correlation of classical systems, entanglement of quantum systems cannot be distributed at will: if one system A is maximally entangled with another system B, it cannot be entangled at all with a third system C. This concept, known as the monogamy of entanglement, is manifest when the entanglement of A with a pair BC can be divided as contributions of the entanglement between A and B and A and C, plus a term τABC involving genuine tripartite entanglement and so expected to be always positive. A very important measure in quantum information theory, the entanglement of formation (EOF), fails to satisfy this last requirement. Here we present the reasons for that and show a set of conditions that an arbitrary pure tripartite state must satisfy for the EOF to become a monogamous measure, i.e., for τABC≥0. The relation derived is connected to the discrepancy between quantum and classical correlations, τABC being negative whenever the quantum correlation prevails over the classical one. This result is employed to elucidate features of the distribution of entanglement during a dynamical evolution. It also helps to relate all monogamous instances of the EOF to the squashed sntanglement, an entanglement measure that is always monogamous. © 2013 American Physical Society.
Resumo:
We study the non-Markovianity of the dynamics of open quantum systems, focusing on the cases of independent and common environmental interactions. We investigate the degree of non-Markovianity quantified by two distinct measures proposed by Luo, Fu, and Song and Breuer, Laine, and Pillo. We show that the amount of non-Markovianity, for a single qubit and a pair of qubits, depends on the quantum process, the proposed measure, and whether the environmental interaction is collective or independent. In particular, we demonstrate that while the degree of non-Markovianity generally increases with the number of qubits in the system for independent environments, the same behavior is not always observed for common environments. In the latter case, our analysis suggests that the amount of non-Markovianity could increase or decrease depending on the properties of the considered quantum process. © 2013 American Physical Society.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Silicon-on-insulator (SOI) is rapidly emerging as a very promising material platform for integrated photonics. As it combines the potential for optoelectronic integration with the low-cost and large volume manufacturing capabilities and they are already accumulate a huge amount of applications in areas like sensing, quantum optics, optical telecommunications and metrology. One of the main limitations of current technology is that waveguide propagation losses are still much higher than in standard glass-based platform because of many reasons such as bends, surface roughness and the very strong optical confinement provided by SOI. Such high loss prevents the fabrication of efficient optical resonators and complex devices severely limiting the current potential of the SOI platform. The project in the first part deals with the simple waveguides loss problem and trying to link that with the polarization problem and the loss based on Fabry-Perot Technique. The second part of the thesis deals with the Bragg Grating characterization from again the point of view of the polarization effect which leads to a better stop-band use filters. To a better comprehension a brief review on the basics of the SOI and the integrated Bragg grating ends up with the fabrication techniques and some of its applications will be presented in both parts, until the end of both the third and the fourth chapters to some results which hopefully make its precedent explanations easier to deal with.
Resumo:
Output bits from an optical logic cell present noise due to the type of technique used to obtain the Boolean functions of two input data bits. We have simulated the behavior of an optically programmable logic cell working with Fabry Perot-laser diodes of the same type employed in optical communications (1550nm) but working here as amplifiers. We will report in this paper a study of the bit noise generated from the optical non-linearity process allowing the Boolean function operation of two optical input data signals. Two types of optical logic cells will be analyzed. Firstly, a classical "on-off" behavior, with transmission operation of LD amplifier and, secondly, a more complicated configuration with two LD amplifiers, one working on transmission and the other one in reflection mode. This last configuration has nonlinear behavior emulating SEED-like properties. In both cases, depending on the value of a "1" input data signals to be processed, a different logic function can be obtained. Also a CW signal, known as control signal, may be apply to fix the type of logic function. The signal to noise ratio will be analyzed for different parameters, as wavelength signals and the hysteresis cycles regions associated to the device, in relation with the signals power level applied. With this study we will try to obtain a better understanding of the possible effects present on an optical logic gate with Laser Diodes.
Resumo:
In this paper we propose to employ an instability that occurs in bistable devices as a control signal at the reception stage to generate the clock signal. One of the adopted configurations is composed of two semiconductor optical amplifiers arranged in a cascaded structure. This configuration has an output equivalent to that obtained from Self-Electrooptic Effect Devices (SEEDs), and it can implement the main Boolean functions of two binary inputs. These outputs, obtained from the addition of two binary signals, show a short spike in the transition from "1" to "2" in the internal processing. A similar result is obtained for a simple semiconductor amplifier with bistable behavior. The paper will show how these structures may help recover clock signals in any optical transmission system
Resumo:
We theoretically demonstrate a method for producing the maximally path-entangled state (1/root2)(\N,0>+exp[iNphi]\0,N>) using intensity-symmetric multiport beam splitters, single photon inputs, and either photon-counting postselection or conditional measurement. The use of postselection enables successful implementation with non-unit efficiency detectors. We also demonstrate how to make the same state more conveniently by replacing one of the single photon inputs by a coherent state.
Resumo:
Using the quantum tunneling theory, we investigate the spin-dependent transport properties of the ferromagnetic metal/Schottky barrier/semiconductor heterojunction under the influence of an external electric field. It is shown that increasing the electric field, similar to increasing the electron density in semiconductor, will result in a slight enhancement of spin injection in tunneling regime, and this enhancement is significantly weakened when the tunneling Schottky barrier becomes stronger. Temperature effect on spin injection is also discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We study the absorption and dispersion properties of a weak probe field monitoring a two-level atom driven by a trichromatic field. We calculate the steady-state linear susceptibility and find that the system can produce a number of multilevel coherence effects predicted for atoms composed of three and more energy levels. Although the atom has only one transition channel, the multilevel effects are possible because there are multichannel transitions between dressed states induced by the driving field. In particular, we show that the system can exhibit multiple electromagnetically induced transparency and can also produce a strong amplification at the central frequency which is not attributed to population inversion in both the atomic bare states and in the dressed atomic states. Moreover, we show that the absorption and dispersion of the probe field is sensitive to the initial relative phase of the components of the driving field. In addition, we show that the group velocity of the probe field can be controlled by changing the initial relative phases or frequencies of the driving fields and can also be varied from subluminal to superluminal. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We analyse the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee (2001 Preprint quant-ph/0110032) and Zhou et al (2002 J. Opt. B. Quantum Semiclass. Opt. 4 425), namely that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin squeezing. We illustrate these findings with three examples of the interaction of the system with thermal, classical squeezed vacuum, and quantum squeezed vacuum fields.
Resumo:
Multipole expansion of an incident radiation field-that is, representation of the fields as sums of vector spherical wavefunctions-is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Measuring the polarization of a single photon typically results in its destruction. We propose, demonstrate, and completely characterize a quantum nondemolition (QND) scheme for realizing such a measurement nondestructively. This scheme uses only linear optics and photodetection of ancillary modes to induce a strong nonlinearity at the single-photon level, nondeterministically. We vary this QND measurement continuously into the weak regime and use it to perform a nondestructive test of complementarity in quantum mechanics. Our scheme realizes the most advanced general measurement of a qubit to date: it is nondestructive, can be made in any basis, and with arbitrary strength.
Resumo:
Pulsed coherent excitation of a two-level atom strongly coupled to a resonant cavity mode will create a superposition of two coherent states of opposite amplitudes in the field. By choosing proper parameters of interaction time and pulse shape the field after the pulse will be almost disentangled from the atom and can be efficiently outcoupled through cavity decay. The fidelity of the generation approaches unity if the atom-field coupling strength is much larger than the atomic and cavity decay rates. This implies a strong difference between even and odd output photon number counts. Alternatively, the coherence of the two generated field components can be proven by phase-dependent annihilation of the generated nonclassical superposition state by a second pulse.