980 resultados para [SDE] Environmental Sciences
Resumo:
Current studies indicate a need to integrate environmental management with manufacturing strategy, including topics like cross-functional integration, environmental impact, and waste reduction. Nevertheless, such studies are relatively rare, existing still a need for research in specific regional contexts. At the same time, the results found are not unanimous. Due to these gaps, the objective of this article is to analyze if environmental management can be considered a new competitive priority for manufacturing enterprises located in Brazil. A cross-sectional survey was conducted with Brazilian companies certified by ISO 14001. Sixty-five valid questionnaires were analyzed through Structural Equation Modelling (SEM). The first conclusion is that environmental management presents a preventive approach in the sample analyzed, focused on eco-efficiency, what potentially do not to create a competitive advantage. This preventive approach inhibits environmental management from being regarded as a new competitive manufacturing priority, in the full sense as defined by the literature. Another important result is that environmental management, although following a preventive focus, may influence positively the four manufacturing priorities: cost, quality, flexibility and delivery. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Environmental tobacco smoke (ETS) leads to the death of 600,000 nonsmokers annually and is associated with disturbances in antioxidant enzyme capacity in the adult rodent brain. However, little is known regarding the influence of ETS on brain development. The aim of this study was to determine levels of malonaldehyde (MDA) and 3-nitrotyrosine (3-NT), as well as enzymatic antioxidant activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), and superoxide dismutase (SOD), in distinct brain structures. BALB/c mice were exposed to ETS twice daily for 1 h from postnatal day 5 through postnatal day 18. Acute exposure was performed for 1 h on postnatal day 18. Mice were euthanized either immediately (0) or 3 h after the last exposure. Immediately after an acute exposure there were higher GR and GST activities and MDA levels in the hippocampus, higher GPx and SOD activities in the prefrontal cortex, and higher GST activity and MDA levels in the striatum and cerebellum. Three hours later there was an increase in SOD activity and MDA levels in the hippocampus and a decrease in the activity of all enzymes in the prefrontal cortex. Immediately after final repeated exposure there were elevated levels of GST and GR activity and decreased GPx activity in the hippocampus. Moreover, a rise was found in GPx and GST activities in the prefrontal cortex and increased GST and GPx activity in the striatum and cerebellum, respectively. After 3 h the prefrontal cortex showed elevated GR and GST activities, and the striatum displayed enhanced GST activity. Data showed that enzymatic antioxidant system in the central nervous system responds to ETS differently in different regions of the brain and that a form of adaptation occurs after several days of exposure.
Resumo:
The sources and concentrations of aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs), faecal and biogenic sterols, and trace metals at 10 sampling sites located in Laranjeiras Bay, a large Environmental Protection Area in the southern Atlantic region of Brazil, were determined to assess the sources of organic matter and the contamination status of estuarine sediments. Organic compounds were determined by GC-FID and GC-MS, and ICP-OES was used to evaluate trace metals. The total AHs concentration ranged from 0.28 to 8.19 mu g g(-1), and n-C-29 and n-C-31 alkanes were predominant, indicating significant inputs from higher terrestrial plants. Unresolved complex mixtures (UCM) were not detected at any site, suggesting that the study area was not significantly contaminated by fossil fuels. The total PAH concentration varied from 3.85 to 89.2 ng g(-1). The ratio between selected PAH isomers showed that combustion of biomass, coal, and petroleum is the rnain source of PAHs in the study area. The concentrations of the faecal sterols coprostanol and epicoprostanol were below the detection limits, suggesting that sewage was not a significant contributor to sedimentary organic matter. The concentrations of the trace metals (As, Cr, Cu, Ni, Pb and Zn) were low, except near sites located at the mouths of rivers that discharge into the study area and near urbanised regions (Paranagua city and the adjoining harbour). In general, the concentrations of PAHs were below the threshold effect concentrations (TEL) levels. Although the As, Cr and Ni concentrations were above the TEL levels, the study area can be considered as preserved from human activities.
Resumo:
A bare graphite-epoxy composite was evaluated as an electrode material in the determination of atenolol in natural water samples and pharmaceutical formulations for which the analyte was spiked. Using a DPV procedure, a linear response was observed in the 4.45-84.7 mu mol L-1 range with a LOD = 2.23 mu mol L-1, without need of surface renewal between successive runs, and recoveries between 92.5 and 107.5% for pharmaceutical formulations. The results obtained from the proposed procedure agreed with HPLC results within a 95% confidence level. During the determination of atenolol in water samples, recoveries between 96.1 and 102.6% were found.
Resumo:
This article is a foray into the understudied issue of environmental protest politics in Central Asia. Specifically, it uses Kyrgyzstan as a case study to test the argument that environmental concerns mobilized people to engage in protest and in ways different from other kinds of protest. This essay presents the first systematic study of public opinion about the environment in Kyrgyzstan. It includes results from a 2009 nationwide survey, over 100 expert and elite interviews, and newspaper content analysis. Furthermore, it spatially analyzes these results to identify geographical variation in public perception and political event occurrence patterns. Protest engagement is a complex process determined by the interaction of several factors, and is not explained solely by affluence, rationality, or grievances. Eco-mobilization - collective political action about the environment - represents a class of protest events that offers a different view into mass discontent in the former Soviet Union and neo-patrimonial societies. The study finds that these political actions about the environment are not necessarily elite driven; there is a basic foundation of national concern and salience of these issues, and demonstrated environmental beliefs do help to explain protest behavior.
Resumo:
Denitrification is an important process of global nitrogen cycle as it removes reactive nitrogen from the biosphere, and acts as the primary source of nitrous oxide (N2O). This thesis seeks to gain better understanding of the biogeochemistry of denitrification by investigating the process from four different aspects: genetic basis, enzymatic kinetics, environmental interactions, and environmental consequences. Laboratory and field experiments were combined with modeling efforts to unravel the complexity of denitrification process under microbiological and environmental controls. Dynamics of denitrification products observed in laboratory experiments revealed an important role of constitutive denitrification enzymes, whose presence were further confirmed with quantitative analysis of functional genes encoding nitrite reductase and nitrous oxide reductase. A metabolic model of denitrification developed with explicit denitrification enzyme kinetics and representation of constitutive enzymes successfully reproduced the dynamics of N2O and N2 accumulation observed in the incubation experiments, revealing important regulatory effect of denitrification enzyme kinetics on the accumulation of denitrification products. Field studies demonstrated complex interaction of belowground N2O production, consumption and transport, resulting in two pulse pattern in the surface flux. Coupled soil gas diffusion/denitrification model showed great potential in simulating the dynamics of N2O below ground, with explicit representation of the activity of constitutive denitrification enzymes. A complete survey of environmental variables showed distinct regulation regimes on the denitrification activity from constitutive enzymes and new synthesized enzymes. Uncertainties in N2O estimation with current biogeochemical models may be reduced as accurate simulation of the dynamics of N2O in soil and surface fluxes is possible with a coupled diffusion/denitrification model that includes explicit representation of denitrification enzyme kinetics. In conclusion, denitrification is a complex ecological function regulated at cellular level. To assess the environmental consequences of denitrification and develop useful tools to mitigate N2O emissions require a comprehensive understanding of the regulatory network of denitrification with respect to microbial physiology and environmental interactions.
Resumo:
In a study of Lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues--mining, material-processing, and manufacturing, and the human elements of physiology, behavior and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models. ^
Resumo:
This study examines and relates concepts from environmental risk perception and environmental justice and focuses on the perception of environmental problems, their consequent health risks and their impact on neighborhood attachment in a predominately Hispanic community along the U.S.-Mexico border. The findings indicate that the perception of environmental problems in the immediate area varies by problem and demographic subgroup. Ethnicity and income have the highest number of statistically significant associations across ten environmental problems. This result lies in the fact that Hispanics in El Paso County and those with low annual incomes live in neighborhoods that are faced with more severe environmental problems. Thus the findings lend support to the environmental justice claim that the poor and minorities bear the brunt of environmental degradation. ^ The findings also provide evidence that public perception of health risks from an environmental problem is influenced by the perceived severity of an environmental problem in the immediate area. Those who believe the problem is serious on a local level are the ones who are most likely to believe that they could become ill or injured from that problem and that the illness/injury will be serious. ^ The findings of this study also indicate that the young, Hispanics, those who perceive considerable environmental problems in their neighborhood, those who believe that their neighborhood has more environmental problems than others, and those who are angry about those problems are most likely to want to move from their neighborhood. ^ Efforts need to be made to enact policies and programs designed to reduce the environmental hazards in disadvantaged Hispanic communities along the U.S.-Mexico border. Future environmental education campaigns need to complement community-based projects with the media. Programs that involve and empower the community, particularly the youth, in improving the neighborhood could provide a sense of control and pride within their community in solving these problems. These neighborhood improvement efforts could also lead to the development and strengthening of social ties within the community, as well as enhanced community cohesiveness in tackling these problems. ^
Resumo:
There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^
Resumo:
A census of 925 U.S. colleges and universities offering masters and doctorate degrees was conducted in order to study the number of elements of an environmental management system as defined by ISO 14001 possessed by small, medium and large institutions. A 30% response rate was received with 273 responses included in the final data analysis. Overall, the number of ISO 14001 elements implemented among the 273 institutions ranged from 0 to 16, with a median of 12. There was no significant association between the number of elements implemented among institutions and the size of the institution (p = 0.18; Kruskal-Wallis test) or among USEPA regions (p = 0.12; Kruskal-Wallis test). The proportion of U.S. colleges and universities that reported having implemented a structured, comprehensive environmental management system, defined by answering yes to all 16 elements, was 10% (95% C.I. 6.6%–14.1%); however 38% (95% C.I. 32.0%–43.8%) reported that they had implemented a structured, comprehensive environmental management system, while 30.0% (95% C.I. 24.7%–35.9%) are planning to implement a comprehensive environmental management system within the next five years. Stratified analyses were performed by institution size, Carnegie Classification and job title. ^ The Osnabruck model, and another under development by the South Carolina Sustainable Universities Initiative, are the only two environmental management system models that have been proposed specifically for colleges and universities, although several guides are now available. The Environmental Management System Implementation Model for U.S. Colleges and Universities developed is an adaptation of the ISO 14001 standard and USEPA recommendations and has been tailored to U.S. colleges and universities for use in streamlining the implementation process. In using this implementation model created for the U.S. research and academic setting, it is hoped that these highly specialized institutions will be provided with a clearer and more cost-effective path towards the implementation of an EMS and greater compliance with local, state and federal environmental legislation. ^
Resumo:
The occurrence of waste pharmaceuticals has been identified and well documented in water sources throughout North America and Europe. Many studies have been conducted which identify the occurrence of various pharmaceutical compounds in these waters. This project is an extensive review of the documented evidence of this occurrence published in the scientific literature. This review was performed to determine if this occurrence has a significant impact on the environment and public health. This project and review found that pharmaceuticals such as sex hormone drugs, antibiotic drugs and antineoplastic/cytostatic agents as well as their metabolites have been found to occur in water sources throughout the United States at levels high enough to have noticeable impacts on human health and the environment. It was determined that the primary sources of this occurrence of pharmaceuticals were waste water effluent and solid wastes from sewage treatment plants, pharmaceutical manufacturing plants, healthcare and biomedical research facilities, as well as runoff from veterinary medicine applications (including aquaculture). ^ In addition, current public policies of US governmental agencies such as the Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and Drug Enforcement Agency (DEA) have been evaluated to see if they are doing a sufficient job at controlling this issue. Specific recommendations for developing these EPA, FDA, and DEA policies have been made to mitigate, prevent, or eliminate this issue.^ Other possible interventions such as implementing engineering controls were also evaluated in order to mitigate, prevent and eliminate this issue. These engineering controls include implementing improved current treatment technologies such as the advancement and improvement of waste water treatment processes utilized by conventional sewage treatment and pharmaceutical manufacturing plants. In addition, administrative controls such as the use of “green chemistry” in drug synthesis and design were also explored and evaluated as possible alternatives to mitigate, prevent, or eliminate this issue. Specific recommendations for incorporating these engineering and administrative controls into the applicable EPA, FDA, and DEA policies have also been made.^
Resumo:
Diarrheal disease associated with enterotoxigenic Escherichia coli (ETEC) infection is one of the major public health problems in many developing countries, especially in infants and young children. Because tests suitable for field laboratories have been developed only relatively recently, the literature on the environmental risk factors associated with ETEC is not as complete as for many other pathogens or for diarrhea of unspecified etiology.^ Data from a diarrheal disease surveillance project in rural Egypt in which stool samples were tested for a variety of pathogens, and in which an environmental questionnaire was completed for the same study households, provided an opportunity to test for an association between ETEC and various risk factors present in those households. ETEC laboratory-positive specimens were compared with ETEC laboratory-negative specimens for both symptomatic and asymptomatic children less than three years of age at the individual and household level using a case-comparison design.^ Individual children more likely to have LT infection were those who lived in HHs that had cooked food stored for subsequent consumption at the time of the visit, where caretakers used water but not soap to clean an infant after a diarrheal stool, and that had an indoor, private water source. LT was more common in HHs where the caretaker did not clean an infant with soap after a diarrheal stool, and where a sleeping infant was not covered with a net. At both the individual and HH level, LT was significantly associated with good water supply in terms of quantity and storage.^ ST was isolated more frequently at the individual level where a sleeping infant was covered with a net, where large animals were kept in or around the house, where water was always available and was not potable, and where the water container was not covered. At the HH level, the absence of a toilet or latrine and the indiscriminate disposal of animal waste decreased risk. Using animal feces for fertilizer, the presence of large animals, and poor water quality were associated with ST at both the individual and HH level.^ These findings are mostly consistent with those of other studies, and/or are biologically plausible, with the obvious exception of those from this study where poorer water supplies are associated with less infection, at least in the case of LT. More direct observation of how animal ownership and feces disposal relates to different types of water supply and usage might clarify mechanisms through which some ETEC infection could be prevented in similar settings. ^
Resumo:
In the last two decades, the significance of lead has been addressed in a number of environmental regulations at the national and state levels. This project investigated the environmental regulations (Clean Air Act and Amendments, 1970-1990 and Clean Water Act of 1977) and their cumulative effects on lead in ambient air and water in the state of Texas. For this purpose, historical records from the Texas Water Development Board, Texas Natural Resources Conservation Commission, and the United States Geological Survey have been assembled and analyzed for temporal and spatial trends. These trends might correspond to the phase out of lead in gasoline and other regulations.^ This study concluded that there is a significant correlation (p $\leq$.001) between environmental regulations of lead in gasoline and the concentration of lead in ambient air. Lead concentrations in ambient air have been reduced by over 90 percent in the past twenty years. An overall significant difference (p $\leq$.001) was found in mean (94, 15 respectively) lead concentrations in surface water between two time periods, one at the beginning of the twenty year period and one at the end of the study period. There has been an overall reduction of lead concentrations in surface water in Texas of approximately 84 percent. However, this reduction cannot be statistically associated with any one regulation. Groundwater data could not be analyzed for lead concentrations because of limitations of reporting data as "less than". Approximately two percent of the groundwater data was analyzed by Oneway ANOVA and no significant difference was found between the means (18, 19 respectively) of two time periods, 1977-1979 and 1988-1990. This data is consistent with the regulations having a contributory affect on declining concentrations, but other factors cannot be ruled out as having added to these declines. This study can also serve as a starting point for a more in-depth study of environmental regulations and their impact on the environment. ^
Resumo:
The efficacy of waste stabilization lagoons for the treatment of five priority pollutants and two widely used commercial compounds was evaluated in laboratory model ponds. Three ponds were designed to simulate a primary anaerobic lagoon, a secondary facultative lagoon, and a tertiary aerobic lagoon. Biodegradation, volatilization, and sorption losses were quantified for bis(2-chloroethyl) ether, benzene, toluene, naphthalene, phenanthrene, ethylene glycol, and ethylene glycol monoethyl ether. A statistical model using a log normal transformation indicated biodegradation of bis(2-chloroethyl) ether followed first-order kinetics. Additionally, multiple regression analysis indicated biochemical oxygen demand was the water quality variable most highly correlated with bis(2-chloroethyl) ether effluent concentration. ^