883 resultados para volatile oil
Resumo:
The chemical composition of essential oils obtained from fresh leaves and stem bark of Southeastern Brazilian native Drimys brasiliensis Miers were analyzed by GC and GC/MS and 37 compounds were identified. The oils from fresh leaves showed the presence of monoterpenes (53.9%) and sesquiterpenes (38.4%), with sabinene (9.5%), myrcene (10.5%), limonene (10.6%) and cyclocolorenone (16.0%) being the most abundant. The stern bark oil was characterized by predominance of sesquiterpenoids (87.6%) and the absence of monoterpenes, the main components being cyclocolorenone (28.3%) and spathuleneol (22.9%). A small amount of phenylpropanes (6.8-6.9%) was also detected in both oil samples.
Resumo:
A novel poly(p-xylylene), PPX, derivative bearing alkoxyphenyl side groups was electrochemically synthesized in 87% yield. The polymer, poly(4`-hexyloxy-2,5-biphenyleneethylene) (PHBPE), presented a fraction (92%) soluble in common organic solvents. It showed to be thermally resistant up to 185 degrees C. UV-vis analysis revealed an E-gap of 3.5 eV Gas sensors made from thin films of 10-camphorsulfonic acid-doped PHBPE deposited on interdigitated electrodes exhibited significant changes in electrical conductance upon exposure to five VHOCs: 1,2-dichloroethane, bromochloromethane, trichloromethane, dichloromethane and tetrachloromethane. The conductance decreased after exposure to tetrachloromethane and increased after exposure to all the other VHOCs. Three-dimensional plots of relative response versus time of half response versus time of half recovery showed good discrimination between the five VHOCs tested. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The chemical composition and the antimicrobial activity of the essential oil from Croton heterocalyx leaves were evaluated. The oil which was analyzed by GC and GUMS was found to contain germacrene D (12.5%), bicyclogermacrene (11.2%), delta-elemene (9.2%) beta-elemene (8.2%), spathulenol (6.9%), linalool (5.4%) and 1,8-cineole (3.7%) its major components. Croton. heterocalyx oil displayed a high inhibitory activity against the fungi Aspergillus niger (16404) and Candida albicans (ATCC 10231.) as well its the Gram-positive bacterium Staphylococcus aureus (ATCC 6538), hut a very weak activity was observed for the Gram-negative bacteria Escherichia coli (ATCC 8739) and Pseudomonas aeruginosa (ATCC 9027).
Resumo:
The catalytic ethanolysis of soybean oil with commercial immobilized lipase type B from Candida antarctica to yield ethyl esters (biodiesel) has been investigated. Transesterification was monitored with respect to the following parameters: quantity of biocatalyst, reaction time, amount of water added and turnover of lipase. The highest yields of biodiesel (87% by (1)H NMR; 82.9% by GC) were obtained after a reaction time of 24 h at 32 degrees C in the presence of lipase equivalent to 5.0% (w/w) of the amount of soybean oil present. The production of ethyl esters by enzymatic ethanolysis was not influenced by the addition of water up to 4.0% (v/v) of the alcohol indicating that it is possible to use hydrated ethanol in the production of biodiesel catalyzed by lipase. The immobilized enzyme showed high stability under moderate reaction conditions and retained its activity after five production cycles. The (1)H NMR methodology elaborated for the quantification of biodiesel in unpurified reaction mixtures showed good correlations between the signal areas of peaks associated with the alpha-methylene groups of the ethyl esters and those of the triacyl-glycerides in residual soybean oil. Monoacylglycerides, diacylglycerides and triglycerides could also be detected and quantified in the crude biodiesel using (1)H NMR spectroscopic and GC-FID chromatographic methods. The biodiesel production by enzymatic catalysis was promising. In this case, was produced a low concentration of glycerol (0.74%) and easily removed by water extraction. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Soybean oil soapstock was utilized as an alternative carbon source for the production of rhamnolipids by Pseudomonas aeruginosa LBI strain. The chemical composition and properties of the rhamnolipid mixture obtained were determined to define its potential applications. The chemical characterization of the rhamnolipid has revealed the presence of ten different homologues. The monorhamnolipid RhaC(10)C(10) and the dirhamnolipid Rha(2)C(10)C(10) were the main components of the mixture that showed predominance of 44% and 29%, respectively, after 144-h of cultivation. The biosurfactant was able to form stable emulsions with several hydrocarbons and showed excellent emulsification for soybean oil and chicken fat (100%). The rhamnolipid removed 67% of crude oil present in sand samples and presented antimicrobial activity against Bacillus cereus and Mucor miehei at 64 mu g/mL and inhibition of Neurospora crassa, Staphylococcus aureus, and Micrococcus luteus at 256 mu g/mL. The results demonstrated that the rhamnolipid produced in soybean oil soapstock can be useful in environmental and food industry applications.
Resumo:
Many factors can affect the quality of diesel oil, in particular the degradation processes that are directly related to some organosulfur compounds. During the degradation process, these compounds are oxidized into their corresponding sulfonic acids, generating a strong acid content during the process. p-Toluene sulfonic acid analysis was performed using the linear sweep voltammetry technique with a platinum ultramicroelectrode in aqueous solution containing 3 mol L(-1) potassium chloride. An extraction step was introduced prior to the voltammetric detection in order to avoid the adsorption of organic molecules, which inhibit the electrochemical response. The extraction step promoted the transference of sulfonic acid from the diesel oil to an aqueous phase. The method was accurate and reproducible, with detection and quantification limits of 5 ppm and 15 ppm, respectively. Recovery of sulfonic acid was around 90%.
Resumo:
The essential oil from seeds of Licaria puchury-major was isolated by hydrodistillation. The chemical composition of the oil was analyzed by GC and GUMS. Sixteen compounds were identified, representing 91.4% of the total oil. The major components were safrole (58.4%), dodecanoic acid (13.7%) and alpha-terpineol (8.4%). Oxygenated monoterpenoids were the main group of compounds.
Resumo:
The study of Aloysia gratissima essential oil from leaves was obtained by hydrodistillation using a Clevenger type apparatus. The essential oil composition was analyzed by GC and GC/MS. The major compounds were identified representing 94.7% of the oil. The most abundant compounds were isopinocamphone (cis-3-pinanone) (25.4%), limonene (15.1%), and guaiol (12.7%).
Resumo:
The present work had as objective the isolation of the five compounds by thin-layer Chromatography (TLC) from the essential oil of the Aloysia gratissima. For this, a number of systems of eluents were used for its separation, indicating that through the system acetone/hexane in proportions (v/v) 1:30 it was possible to isolate guaiol, elemol, pinocanphone (trans-3-pinanone), cis-pinocarvyl, and acorenone. The isolation of the compound acorenone from the other compounds was possible with the mixture of solvents hexane/dichloromethane in proportions (v/v) (1:1,3).
Resumo:
This paper analyzes empirically the effect of crude oil price change on the economic growth of Indian-Subcontinent (India, Pakistan and Bangladesh). We use a multivariate Vector Autoregressive analysis followed by Wald Granger causality test and Impulse Response Function (IRF). Wald Granger causality test results show that only India’s economic growth is significantly affected when crude oil price decreases. Impact of crude oil price increase is insignificantly negative for all three countries during first year. In second year, impact is negative but smaller than first year for India, negative but larger for Bangladesh and positive for Pakistan.
Resumo:
The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1015/thumbnail.jpg
Resumo:
The current system of controlling oil spills involves a complex relationship of international, federal and state law, which has not proven to be very effective. The multiple layers of regulation often leave shipowners unsure of the laws facing them. Furthemore, nations have had difficulty enforcing these legal requirements. This thesis deals with the role marine insurance can play within the existing system of legislation to provide a strong preventative influence that is simple and cost-effective to enforce. In principle, insurance has two ways of enforcing higher safety standards and limiting the risk of an accident occurring. The first is through the use of insurance premiums that are based on the level of care taken by the insured. This means that a person engaging in riskier behavior faces a higher insurance premium, because their actions increase the probability of an accident occurring. The second method, available to the insurer, is collectively known as cancellation provisions or underwriting clauses. These are clauses written into an insurance contract that invalidates the agreement when certain conditions are not met by the insured The problem has been that obtaining information about the behavior of an insured party requires monitoring and that incurs a cost to the insurer. The application of these principles proves to be a more complicated matter. The modern marine insurance industry is a complicated system of multiple contracts, through different insurers, that covers the many facets of oil transportation. Their business practices have resulted in policy packages that cross the neat bounds of individual, specific insurance coverage. This paper shows that insurance can improve safety standards in three general areas -crew training, hull and equipment construction and maintenance, and routing schemes and exclusionary zones. With crew, hull and equipment, underwriting clauses can be used to ensure that minimum standards are met by the insured. Premiums can then be structured to reflect the additional care taken by the insured above and beyond these minimum standards. Routing schemes are traffic flow systems applied to congested waterways, such as the entrance to New York harbor. Using natural obstacles or manmade dividers, ships are separated into two lanes of opposing traffic, similar to a road. Exclusionary zones are marine areas designated off limits to tanker traffic either because of a sensitive ecosystem or because local knowledge is required of the region to ensure safe navigation. Underwriting clauses can be used to nullify an insurance contract when a tanker is not in compliance with established exclusionary zones or routing schemes.