946 resultados para stromal reorganization
Resumo:
Actin reorganization is a tightly regulated process that co-ordinates complex cellular events, such as cell migration, chemotaxis, phagocytosis and adhesion, but the molecular mechanisms that underlie these processes are not well understood. SCAR (suppressor of cAMP receptor)/WAVE [WASP (Wiskott-Aldrich syndrome protein)-family verprolin homology protein] proteins are members of the conserved WASP family of cytoskeletal regulators, which play a critical role in actin dynamics by triggering Arp2/3 (actin-related protein 2/3)-dependent actin nucleation. SCAR/WAVEs are thought to be regulated by a pentameric complex which also contains Abi (Abl-interactor), Nap (Nck-associated protein), PIR121 (p53-inducible mRNA 121) and HSPC300 (haematopoietic stem progenitor cell 300), but the structural organization of the complex and the contribution of its individual components to the regulation of SCAR/WAVE function remain unclear. Additional features of SCAR/WAVE regulation are highlighted by the discovery of other interactors and distinct complexes. It is likely that the combinatorial assembly of different components of SCAR/WAVE complexes will prove to be vital for their roles at the centre of dynamic actin reorganization.
Resumo:
In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highlyordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the biofabrication and subsequent self-release of natural, bioprosthetic human tissues depend solely on simple templatetissue feedback interactions.
Resumo:
The spontaneous assembly of a peptide bolaamphiphile in water, namely, RFL4FR (R, arginine; F, phenylalanine; L, leucine) is investigated, along with its novel properties in surface modification and usage as substrates for cell culture. RFL4FR self-assembles into nanosheets through lateral association of the peptide backbone. The L4 sequence is located within the core of the nanosheets, whereas the R moieties are exposed to the water at the surface of the nanosheets. Kinetic assays indicate that the self-assembly is driven by a remarkable two-step process, where a nucleation phase is followed by fast growth of nanosheets with an autocatalysis process. The internal structure of the nanosheets is formed from ultrathin bolaamphiphile monolayers with a crystalline orthorhombic symmetry with cross-β organization. We show that human corneal stromal fibroblast (hCSF) cells can grow on polystyrene films coated with films dried from RFL4FR solutions. For the first time, this type of amphiphilic peptide is used as a substrate to modulate the wettability of solid surfaces for cell culture applications.
Resumo:
El Niño events are a prominent feature of climate variability with global climatic impacts. The 1997/98 episode, often referred to as ‘the climate event of the twentieth century’1, 2, and the 1982/83 extreme El Niño3, featured a pronounced eastward extension of the west Pacific warm pool and development of atmospheric convection, and hence a huge rainfall increase, in the usually cold and dry equatorial eastern Pacific. Such a massive reorganization of atmospheric convection, which we define as an extreme El Niño, severely disrupted global weather patterns, affecting ecosystems4, 5, agriculture6, tropical cyclones, drought, bushfires, floods and other extreme weather events worldwide3, 7, 8, 9. Potential future changes in such extreme El Niño occurrences could have profound socio-economic consequences. Here we present climate modelling evidence for a doubling in the occurrences in the future in response to greenhouse warming. We estimate the change by aggregating results from climate models in the Coupled Model Intercomparison Project phases 3 (CMIP3; ref. 10) and 5 (CMIP5; ref. 11) multi-model databases, and a perturbed physics ensemble12. The increased frequency arises from a projected surface warming over the eastern equatorial Pacific that occurs faster than in the surrounding ocean waters13, 14, facilitating more occurrences of atmospheric convection in the eastern equatorial region.
Resumo:
This work examined how the conceptus modulates endometrial tissue remodeling and vascular development prior to implantation in mares. A macroscopic uterine examination was completed at day 21 of pregnancy. In situ morphology revealed that the endometrium involved in encroachment is restricted to the dorsal endometrium immediately overlying the yolk sac. The amount of stromal area occupied by blood vessels and the number of endometrial glands were increased during early pregnancy. Endometrial histomorphometry as well as the endometrial mRNA abundance and immunolocalization of VEGF, VEGFR1, VEGFR2, and Ki-67 was completed at days 14 and 21 of pregnancy, at day 10 of the estrous cycle, and during estrus. No obvious differences in VEGF and VEGFR1 protein localization were detected between pregnant and cycling mares but differential staining pattern for VEGFR2 and Ki-67 was observed. VEGFR2 localized to luminal and glandular epithelium of pregnant mares, while luminal epithelium was negative in cycling mares. Ki-67 staining was weak during the luteal phase but exhibited prominent luminal epithelium staining during estrus. In pregnant mares, all endometrial layers were Ki-67 positive. Quantitative RT-PCR revealed a greater abundance of VEGF mRNA during pregnancy. VEGFR2 transcript abundance was greatest in pregnant mares on day 21. This study supports the concept that the conceptus plays an active role in directing vasculogenesis within the uterus and thereby establishing hemotrophic nutrition that supports pregnancy after implantation. Reproduction (2011) 142 593-603
Resumo:
Oocyte maturation is a long process during which oocytes acquire their intrinsic ability to support the subsequent stages of development in a stepwise manner, ultimately reaching activation of the embryonic genome. This process involves complex and distinct, although linked, events of nuclear and cytoplasmic maturation. Nuclear maturation mainly involves chromosomal segregation, whereas cytoplasmic maturation involves organelle reorganization and storage of mRNAs, proteins and transcription factors that act in the overall maturation process, fertilization and early embryogenesis. Thus, for didactic purposes, we subdivided cytoplasmic maturation into: (1) organelle redistribution, (2) cytoskeleton dynamics, and (3) molecular maturation. Ultrastructural analysis has shown that mitochondria, ribosomes, endoplasmic reticulum, cortical granules and the Golgi complex assume different positions during the transition from the germinal vesicle stage to metaphase II. The cytoskeletal microfilaments and microtubules present in the cytoplasm promote these movements and act on chromosome segregation. Molecular maturation consists of transcription, storage and processing of maternal mRNA, which is stored in a stable, inactive form until translational recruitment. Polyadenylation is the main mechanism that initiates protein translation and consists of the addition of adenosine residues to the 3` terminal portion of mRNA. Cell cycle regulators, proteins, cytoplasmic maturation markers and components of the enzymatic antioxidant system are mainly transcribed during this stage. Thus, the objective of this review is to focus on the cytoplasmic maturation process by analyzing the modifications in this compartment during the acquisition of meiotic competence for development. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
Genetic mutations responsible for oblique facial clefts (ObFC), a unique class of facial malformations, are largely unknown. We show that loss-of-function mutations in SPECC1L. are pathogenic for this human developmental disorder and that SPECC1L is a critical organizer of vertebrate facial morphogenesis. During murine embryogenesis, Speed 1 1 is expressed in cell populations of the developing facial primordial, which proliferate and fuse to form the face. In zebrafish, knockdown of a SPECC1L homolog produces a faceless phenotype with loss of jaw and facial structures, and knockdown in Drosophila phenocopies mutants in the integrin signaling pathway that exhibit cell-migration and -adhesion defects. Furthermore, in mammalian cells, SPECC1L colocalizes with both tubulin and actin, and its deficiency results in defective actin-cytoskeleton reorganization, as well as abnormal cell adhesion and migration. Collectively, these data demonstrate that SPECC1L functions in actin-cytoskeleton reorganization and is required for proper facial morphogenesis.
Resumo:
A bill allowing researches with human embryonic stem cells has been approved by the Brazilian Congress, originally in 2005 and definitively by the Supreme Court in 2008. However, several years before, investigations in Brazil with adult stem cells in vitro in animal models as well as clinical trials, were started and are currently underway. Here, we will summarize the main findings and the challenges of going from bench to bed, focusing on heart, diabetes, cancer, craniofacial, and neuromuscular disorders. We also call attention to the importance of publishing negative results on experimental trials in scientific journals and websites. They are of great value to investigators in the field and may avoid the repeating of unsuccessful experiments. In addition, they could be referred to patients seeking information, aiming to protect them against financial and psychological harm.
Resumo:
The identification of mesenchymal stem cell ( MSC) sources that are easily obtainable is of utmost importance. Several studies have shown that MSCs could be isolated from umbilical cord (UC) units. However, the presence of MSCs in umbilical cord blood (UCB) is controversial. A possible explanation for the low efficiency of MSCs from UCB is the use of different culture conditions by independent studies. Here, we compared the efficiency in obtaining MSCs from unrelated paired UCB and UC samples harvested from the same donors. Samples were processed simultaneously, under the same culture conditions. Although MSCs from blood were obtained from only 1 of the 10 samples, we were able to isolate large amounts of multi-potent MSCs from all UC samples, which were able to originate different cell lineages. Since the routine procedure in UC banks has been to store the blood and discard other tissues, such as the cord and/or placenta, we believe our results are of immediate clinical value. Furthermore, the possibility of originating different cell lines from the UC of neonates born with genetic defects may provide new cellular research models for understanding human malformations and genetic disorders, as well as the possibility of testing the effects of different therapeutic drugs.
Resumo:
Adipose tissue may represent a potential source of adult stem cells for tissue engineering applications in veterinary medicine. It can be obtained in large quantities, under local anesthesia, and with minimal discomfort. In this study, canine adipose tissue was obtained by biopsy from subcutaneous adipose tissue or by suction-assisted lipectomy (i.e., liposuction). Adipose tissue was processed to obtain a fibroblast-like population of cells similar to human adipose-derived stem cells (hASCs). These canine adipose-derived stem cells (cASCs) can be maintained in vitro for extended periods with stable population doubling and low levels of senescence. Immunofluorescence and flow cytometry show that the majority of cASCs are of mesodermal or mesenchymal origin. cASCs are able to differentiate in vitro into adipogenic, chondrogenic, myogenic, and osteogenic cells in the presence of lineage-specific induction factors. In conclusion, like human lipoaspirate, canine adipose tissue may also contain multipotent cells and represent an important stem cell source both for veterinary cell therapy as well as preclinical studies.
Resumo:
Mesenchymal stem cells (MSC) are multipotent cells which can be obtained from several adult and fetal tissues including human umbilical cord units. We have recently shown that umbilical cord tissue (UC) is richer in MSC than umbilical cord blood (UCB) but their origin and characteristics in blood as compared to the cord remains unknown. Here we compared, for the first time, the exonic protein-coding and intronic noncoding RNA (ncRNA) expression profiles of MSC from match-paired UC and UCB samples, harvested from the same donors, processed simultaneously and under the same culture conditions. The patterns of intronic ncRNA expression in MSC from UC and UCB paired units were highly similar, indicative of their common donor origin. The respective exonic protein-coding transcript expression profiles, however, were significantly different. Hierarchical clustering based on protein-coding expression similarities grouped MSC according to their tissue location rather than original donor. Genes related to systems development, osteogenesis and immune system were expressed at higher levels in UCB, whereas genes related to cell adhesion, morphogenesis, secretion, angiogenesis and neurogenesis were more expressed in UC cells. These molecular differences verified in tissue-specific MSC gene expression may reflect functional activities influenced by distinct niches and should be considered when developing clinical protocols involving MSC from different sources. In addition, these findings reinforce our previous suggestion on the importance of banking the whole umbilical cord unit for research or future therapeutic use.
Resumo:
Thimet oligopeptidase (EC 3.4.24.15, TOP) is a metallo-oligopeptidase that participates in the intracellular metabolism of peptides. Predictions based on structurally analogous peptidases (Dcp and ACE-2) show that TOP can present a hinge-bend movement during substrate hydrolysis, what brings some residues closer to the substrate. One of these residues that in TOP crystallographic structure are far from the catalytic residues, but, moves toward the substrate considering this possible structural reorganization is His(600). In the present work, the role of His(600) of TOP was investigated by site-directed mutagenesis. TOP H600A mutant was characterized through analysis of S(1) and S(1)`, specificity, pH-activity profile and inhibition by JA-2. Results showed that TOP His(600) residue makes important interactions with the substrate, supporting the prediction that His(600) moves toward the substrate due to a hinge movement similar to the Dcp and ACE-2. Furthermore, the mutation H600A affected both K(m) and k(cat), showing the importance of His(600) for both substrate binding and/or product release from active site. Changes in the pH-profile may indicate also the participation of His(600) in TOP catalysis, transferring a proton to the newly generated NH(2)-terminus or helping Tyr(605) and/or Tyr(612) in the intermediate oxyanion stabilization. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.
Resumo:
Therapy with stem cells has showed to be promising for acute kidney injury (AKI), although how it works is still controversial. Modulation of the inflammatory response is one possible mechanism. Most of published data relies on early time and whether the protection is still maintained after that is not known. Here, we analyzed whether immune modulation continues after 24 h of reperfusion. MSC were obtained from male Wistar rats. After 3-5 passages, cells were screened for CD73, CD90, CD44, CD45, CD29 and CD 31. In addition, MSC were submitted to differentiation in adipocyte and in osteocyte. AKI was induced by bilaterally clamping of renal pedicles for 60 min. Six hours after injury, MSC (2 x 105 cells) were administered intravenously. MSC-treated animals presented the lowest serum creatinine compared to non-treated animals (24 h: 1.3 +/- 0.21 vs. 3.23 +/- 0.89 mg/dl, p<0.05). The improvement in renal function was followed by a lower expression of IL-1b, IL-6 and TNF-alpha and higher expression of IL-4 and IL-10. However, 48 h after reperfusion, this cytokine profile has changed. The decrease in Th1 cytokines was less evident and IL-6 was markedly up regulated. PCNA analysis showed that regeneration occurs faster in kidney tissues of MSC-treated animals than in controls at 24 h. And also ratio of Bcl-2/Bad was higher at treated animals after 24 and 48 h. Our data demonstrated that the immunomodulatory effects of MSC occur at very early time point, changing the inflammation profile toward a Th2 profile. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, Basel