897 resultados para spatio-temporal variation
Resumo:
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Resumo:
The capacity to perceive and respond is integral to biological immune systems, but to what extent can plants specifically recognize and respond to insects? Recent findings suggest that plants possess surveillance systems that are able to detect general patterns of cellular damage as well as highly specific herbivore-associated cues. The jasmonate (JA) pathway has emerged as the major signaling cassette that integrates information perceived at the plant–insect interface into broad-spectrum defense responses. Specificity can be achieved via JA-independent processes and spatio-temporal changes of JA-modulating hormones, including ethylene (ET), salicylic acid (SA), abscisic acid (ABA), auxin, cytokinins (CK), brassinosteroids (BR) and gibberellins (GB). The identification of receptors and ligands and an integrative view of hormone-mediated response systems are crucial to understand specificity in plant immunity to herbivores.
Resumo:
The use of hindcast climatic data is quite extended for multiple applications. However, this approach needs the support of a validation process to allow its drawbacks and, therefore, confidence levels to be assessed. In this work, the strategy relies on an hourly wind database resulting from a dynamical downscaling experiment, with a spatial resolution of 10 km, covering the Iberian Peninsula (IP), driven by the ERA40 reanalysis (1959–2001) extended by European Centre for Medium-Range Weather Forecast (ECMWF) analysis (2002–2007) and comprising two main steps. Initially, the skill of the simulation is evaluated comparing the quality-tested observational database (Lorente-Plazas et al., 2014) at local and regional scales. The results show that the model is able to portray the main features of the wind over the IP: annual cycles, wind roses, spatial and temporal variability, as well as the response to different circulation types. In addition, there is a significant added value of the simulation with respect to driving conditions, especially in regions with a complex orography. However, some problems are evident, the major drawback being the systematic overestimation of the wind speed, which is mainly attributed to a missrepresentation of frictional forces. The model skill is also lower along the Mediterranean coast and for the Pyrenees. In a second phase, the high spatio-temporal resolution of the pseudo-real wind database is used to explore the limitations of the observational database. It is shown that missing values do not affect the characterisation of the wind climate over the IP, while the length of the observational period (6 years) is sufficient for most regions, with only a few exceptions. The spatial distribution of the observational sampling schemes should be enhanced to improve the correct assessment of all IP wind regimes, particularly in some mountainous areas.
Resumo:
In many designs for radioactive waste repositories, cement and clay will come into direct contact. The geochemical contrast between cement and clay will lead to mass fluxes across the interface, which consequently results in alteration of structural and transport properties of both materials that may affect the performance of the multi-barrier system. We present an experimental approach to study cement-clay interactions with a cell to accommodate small samples of cement and clay. The cell design allows both in situ measurement of water content across the sample using neutron radiography and measurement of transport parameters using through-diffusion tracer experiments. The aim of the high- resolution neutron radiography experiments was to monitor changes in water content (porosity) and their spatial extent. Neutron radiographs of several evolving cement-clay interfaces delivered quantitative data which allow resolving local water contents within the sample domain. In the present work we explored the uncertainties of the derived water contents with regard to various input parameters and with regard to the applied image correction procedures. Temporal variation of measurement conditions created absolute uncertainty of the water content in the order of ±0.1 (m3/m3), which could not be fully accounted for by correction procedures. Smaller relative changes in water content between two images can be derived by specific calibrations to two sample regions with different, invariant water contents.
Resumo:
This thesis covers a broad part of the field of computational photography, including video stabilization and image warping techniques, introductions to light field photography and the conversion of monocular images and videos into stereoscopic 3D content. We present a user assisted technique for stereoscopic 3D conversion from 2D images. Our approach exploits the geometric structure of perspective images including vanishing points. We allow a user to indicate lines, planes, and vanishing points in the input image, and directly employ these as guides of an image warp that produces a stereo image pair. Our method is most suitable for scenes with large scale structures such as buildings and is able to skip the step of constructing a depth map. Further, we propose a method to acquire 3D light fields using a hand-held camera, and describe several computational photography applications facilitated by our approach. As the input we take an image sequence from a camera translating along an approximately linear path with limited camera rotations. Users can acquire such data easily in a few seconds by moving a hand-held camera. We convert the input into a regularly sampled 3D light field by resampling and aligning them in the spatio-temporal domain. We also present a novel technique for high-quality disparity estimation from light fields. Finally, we show applications including digital refocusing and synthetic aperture blur, foreground removal, selective colorization, and others.
Resumo:
Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.
Resumo:
Regime shifts, defined as a radical and persistent reconfiguration of an ecosystem following a disturbance, have been acknowledged by scientists as a very important aspect of the dynamic of ecosystems. However, their consideration in land management planning remains marginal and limited to specific processes and systems. Current research focuses on mathematical modeling and statistical analysis of spatio-temporal data for specific environmental variables. These methods do not fulfill the needs of land managers, who are confronted with a multitude of processes and pressure types and require clear and simple strategies to prevent regime shift or to increase the resilience of their environment. The EU-FP7 CASCADE project is looking at regime shifts of dryland ecosystems in southern Europe and specifically focuses on rangeland and forest systems which are prone to various land degradation threats. One of the aims of the project is to evaluate the impact of different management practices on the dynamic of the environment in a participatory manner, including a multi-stakeholder evaluation of the state of the environment and of the management potential. To achieve this objective we have organized several stakeholder meetings and we have compiled a review of management practices using the WOCAT methodology, which enables merging scientific and land users knowledge. We highlight here the main challenges we have encountered in applying the notion of regime shift to real world socio-ecological systems and in translating related concepts such as tipping points, stable states, hysteresis and resilience to land managers, using concrete examples from CASCADE study sites. Secondly, we explore the advantages of including land users’ knowledge in the scientific understanding of regime shifts. Moreover, we discuss useful alternative concepts and lessons learnt that will allow us to build a participatory method for the assessment of resilient management practices in specific socio-ecological systems and to foster adaptive dryland management.
Resumo:
Wir antworten auf die Kritik an unserem Artikel (Ackermann u. Traunmüller 2014) und argumentieren, dass Theorien über die abnehmende Bedeutung sozial-struktureller Merkmale für das Wahlverhalten fehlgeleitet sind. Stattdessen interessiert uns die gehaltvollere Frage, wie und unter welchen Bedingungen sie politisch wirksam werden. Diese Theorieperspektive öffnet den Blick für regionale und temporale Variation sozialer Einflussprozesse, welche gängigen Ansichten zum Cleavage-Voting widersprechen. Wir unterstützen unser Argument, indem wir demonstrieren, dass soziale Kontexte für das individuelle Wahlverhalten heutzutage wichtiger sind als noch vor Jahrzehnten. Abschließend diskutieren wir weiterführende Implikationen für soziale Kontextanalysen des Wahlverhaltens.
Resumo:
Subsurface fluid flow can be affected by earthquakes; increased spring activity, mud vol- cano eruptions, groundwater fluctuations, changes in geyser frequency, and other forms of altered subsurface fluid flow have been documented during, after, or even prior to seismic shaking. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge groundwater from the Jura Mountains karstic aquifers and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from these phases of sediment expulsion and of multiple time-correlative mass-transport deposits. We report five striking instances of concurrent multiple subsurface sediment deposits and multiple mass- transport deposits since late glacial times, for which we propose past earthquakes as a trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum mac- roseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as a paleoseismic proxy.
Resumo:
State of the art methods for disparity estimation achieve good results for single stereo frames, but temporal coherence in stereo videos is often neglected. In this paper we present a method to compute temporally coherent disparity maps. We define an energy over whole stereo sequences and optimize their Conditional Random Field (CRF) distributions using mean-field approximation. We introduce novel terms for smoothness and consistency between the left and right views, and perform CRF optimization by fast, iterative spatio-temporal filtering with linear complexity in the total number of pixels. Our results rank among the state of the art while having significantly less flickering artifacts in stereo sequences.
Resumo:
The aetiology of childhood cancers remains largely unknown. It has been hypothesized that infections may be involved and that mini-epidemics thereof could result in space-time clustering of incident cases. Most previous studies support spatio-temporal clustering for leukaemia, while results for other diagnostic groups remain mixed. Few studies have corrected for uneven regional population shifts which can lead to spurious detection of clustering. We examined whether there is space-time clustering of childhood cancers in Switzerland identifying cases diagnosed at age <16 years between 1985 and 2010 from the Swiss Childhood Cancer Registry. Knox tests were performed on geocoded residence at birth and diagnosis separately for leukaemia, acute lymphoid leukaemia (ALL), lymphomas, tumours of the central nervous system, neuroblastomas and soft tissue sarcomas. We used Baker's Max statistic to correct for multiple testing and randomly sampled time-, sex- and age-matched controls from the resident population to correct for uneven regional population shifts. We observed space-time clustering of childhood leukaemia at birth (Baker's Max p = 0.045) but not at diagnosis (p = 0.98). Clustering was strongest for a spatial lag of <1 km and a temporal lag of <2 years (Observed/expected close pairs: 124/98; p Knox test = 0.003). A similar clustering pattern was observed for ALL though overall evidence was weaker (Baker's Max p = 0.13). Little evidence of clustering was found for other diagnostic groups (p > 0.2). Our study suggests that childhood leukaemia tends to cluster in space-time due to an etiologic factor present in early life.
Resumo:
BACKGROUND Tight spatio-temporal signaling of cytoskeletal and adhesion dynamics is required for localized membrane protrusion that drives directed cell migration. Different ensembles of proteins are therefore likely to get recruited and phosphorylated in membrane protrusions in response to specific cues. RESULTS HERE, WE USE AN ASSAY THAT ALLOWS TO BIOCHEMICALLY PURIFY EXTENDING PROTRUSIONS OF CELLS MIGRATING IN RESPONSE TO THREE PROTOTYPICAL RECEPTORS: integrins, recepor tyrosine kinases and G-coupled protein receptors. Using quantitative proteomics and phospho-proteomics approaches, we provide evidence for the existence of cue-specific, spatially distinct protein networks in the different cell migration modes. CONCLUSIONS The integrated analysis of the large-scale experimental data with protein information from databases allows us to understand some emergent properties of spatial regulation of signaling during cell migration. This provides the cell migration community with a large-scale view of the distribution of proteins and phospho-proteins regulating directed cell migration.
Resumo:
The ability to respond plastically to the environment has allowed amphibians to evolve adaptive responses to spatial and temporal variation in predation threat. However, animals exposed to predators may also show costs of plasticity or tradeoffs. This study examines predator-induced plasticity in larval development, behavior, and metamorphosis in the spotted salamander, Ambystoma maculatum. Salamanders were raised in two treatments: with predator cues (a fish predator, genus Lepomis, on the other side of a divided tank), or without predator cues. During the larval stage the predator treatment group experienced higher mortality rates than the no-predator treatment group. Behavioral trials revealed that predator treatment animals ate less than those not exposed, and that this feeding response was immediately inducible and had lasting effects. Animals in the predator treatment group had smaller tail areas during the mid-larval period. Feeding and body size effects may have contributed to increased mortality in the predator-treatment animals. The timing of metamorphic onset was not affected by the presence of predators, but predator-treatment salamanders had shorter snout/vent lengths at metamorphosis. The duration of metamorphosis showed a potentially adaptive plastic response to the presence of predator cues: metamorphosis was longest in the no-predator treatment group, reduced in the predator treatment group, and even further reduced for animals exposed to predator cues only during metamorphosis. Overall, we found a mix of potentially adaptive and costly plastic responses in spotted salamanders.
Resumo:
In a marvelous but somewhat neglected paper, 'The Corporation: Will It Be Managed by Machines?' Herbert Simon articulated from the perspective of 1960 his vision of what we now call the New Economy the machine-aided system of production and management of the late twentieth century. Simon's analysis sprang from what I term the principle of cognitive comparative advantage: one has to understand the quite different cognitive structures of humans and machines (including computers) in order to explain and predict the tasks to which each will be most suited. Perhaps unlike Simon's better-known predictions about progress in artificial intelligence research, the predictions of this 1960 article hold up remarkably well and continue to offer important insights. In what follows I attempt to tell a coherent story about the evolution of machines and the division of labor between humans and machines. Although inspired by Simon's 1960 paper, I weave many other strands into the tapestry, from classical discussions of the division of labor to present-day evolutionary psychology. The basic conclusion is that, with growth in the extent of the market, we should see humans 'crowded into' tasks that call for the kinds of cognition for which humans have been equipped by biological evolution. These human cognitive abilities range from the exercise of judgment in situations of ambiguity and surprise to more mundane abilities in spatio-temporal perception and locomotion. Conversely, we should see machines 'crowded into' tasks with a well-defined structure. This conclusion is not based (merely) on a claim that machines, including computers, are specialized idiots-savants today because of the limits (whether temporary or permanent) of artificial intelligence; rather, it rests on a claim that, for what are broadly 'economic' reasons, it will continue to make economic sense to create machines that are idiots-savants.
Resumo:
The ability to respond plastically to the environment has allowed amphibians to evolve a response to spatial and temporal variation in predation threat (Benard 2004). Embroys exposed to egg predation are expected to hatch out earlier than their conspecifics. Larval predation can induce a suite of phenotypic changes including growing a larger tail area. When presented with cues from both egg and larval predators, embryos are expected to respond to the egg predator by hatching out earlier because the egg predator presents an immediate threat. However, hatching early may be costly in the larval environment in terms of development, morphology, and/or behavior. We created a laboratory experiment in which we exposed clutches of spotted salamander (Ambystoma maculatum) eggs to both egg (caddisfly larvae) and larval (A. opacum) predators to test this hypothesis. We recorded hatching time and stage and took developmental and morphological data of the animals a week after hatching. Larvae were entered into lethal predation trials with a larval predatory sunfish (Lepomis sp.) in order to study behavior. We found that animals exposed to the egg predator cues hatched out earlier and at earlier developmental stages than conspecifics regardless of whether there was a larval predator present. Animals exposed to larval predator cues grew relatively larger tails and survived longer in the lethal predation trials. However the group exposed to both predators showed a cost of early hatching in terms of lower tail area and shorter survival time in predation trials. The morphological and developmental effects measured of hatching plasticity were transient as there were no developmental or morphological differences between the treatment groups at metamorphosis. Hatching plasticity may be transient but it is important to the development and survival of many amphibians.