Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering


Autoria(s): Arjomand, Siavash; Budweiser, Gregor; Zwicker, Matthias
Data(s)

2015

Resumo

State of the art methods for disparity estimation achieve good results for single stereo frames, but temporal coherence in stereo videos is often neglected. In this paper we present a method to compute temporally coherent disparity maps. We define an energy over whole stereo sequences and optimize their Conditional Random Field (CRF) distributions using mean-field approximation. We introduce novel terms for smoothness and consistency between the left and right views, and perform CRF optimization by fast, iterative spatio-temporal filtering with linear complexity in the total number of pixels. Our results rank among the state of the art while having significantly less flickering artifacts in stereo sequences.

Formato

application/pdf

Identificador

http://boris.unibe.ch/81126/1/PID3903707.pdf

Arjomand, Siavash; Budweiser, Gregor; Zwicker, Matthias (2015). Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering (Unpublished). In: Asian Conference on Pattern Recognition (ACPR). Kuala Lumpur. 03-06.11.2015. 10.1109/ACPR.2015.7486514 <http://dx.doi.org/10.1109/ACPR.2015.7486514>

doi:10.7892/boris.81126

info:doi:10.1109/ACPR.2015.7486514

Idioma(s)

eng

Relação

http://boris.unibe.ch/81126/

http://dx.doi.org/10.1109/ACPR.2015.7486514

Direitos

info:eu-repo/semantics/openAccess

Fonte

Arjomand, Siavash; Budweiser, Gregor; Zwicker, Matthias (2015). Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering (Unpublished). In: Asian Conference on Pattern Recognition (ACPR). Kuala Lumpur. 03-06.11.2015. 10.1109/ACPR.2015.7486514 <http://dx.doi.org/10.1109/ACPR.2015.7486514>

Palavras-Chave #000 Computer science, knowledge & systems #510 Mathematics
Tipo

info:eu-repo/semantics/conferenceObject

info:eu-repo/semantics/draft

PeerReviewed