982 resultados para sex cord stromal tumor
Resumo:
BACKGROUND: Ras signaling regulates a number of important processes in the heart, including cell growth and hypertrophy. Although it is known that defective Ras signaling is associated with Noonan, Costello, and other syndromes that are characterized by tumor formation and cardiac hypertrophy, little is known about factors that may control it. Here we investigate the role of Ras effector Ras-association domain family 1 isoform A (RASSF1A) in regulating myocardial hypertrophy.
METHODS AND RESULTS: A significant downregulation of RASSF1A expression was observed in hypertrophic mouse hearts, as well as in failing human hearts. To further investigate the role of RASSF1A in cardiac (patho)physiology, we used RASSF1A knock-out (RASSF1A(-)(/)(-)) mice and neonatal rat cardiomyocytes with adenoviral overexpression of RASSF1A. Ablation of RASSF1A in mice significantly enhanced the hypertrophic response to transverse aortic constriction (64.2% increase in heart weight/body weight ratio in RASSF1A(-)(/)(-) mice compared with 32.4% in wild type). Consistent with the in vivo data, overexpression of RASSF1A in cardiomyocytes markedly reduced the cellular hypertrophic response to phenylephrine stimulation. Analysis of molecular signaling events in isolated cardiomyocytes indicated that RASSF1A inhibited extracellular regulated kinase 1/2 activation, likely by blocking the binding of Raf1 to active Ras.
CONCLUSIONS: Our data establish RASSF1A as a novel inhibitor of cardiac hypertrophy by modulating the extracellular regulated kinase 1/2 pathway.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
The role of insulin-like growth factor binding protein 2 (IGFBP2) in cancer is unclear. In general, IGFBP2 is considered to be oncogenic and its expression is often observed to be elevated in cancer. However, there are a number of conflicting reports in vitro and in vivo where IGFBP2 acts in a tumor suppressor manner. In this mini-review, we discuss the factors influencing the variation in IGFBP2 expression in cancer and our interpretation of these findings.
Resumo:
Malignant Triton tumor (MTT) is a malignant peripheral nerve sheath tumor showing rhabdomyoblastic differentiation. It is considered a high-grade neoplasm with poor outcome. This report describes an MTT appearing in the oral cavity. On histologic examination the encapsulated lesion was composed of interlacing fascicles of spindle cells and scattered, large, strap-like pleomorphic cells with abundant eosinophilic cytoplasm. No cross striations were seen. Examination of levels through the tissue showed a total of only 4 normal mitoses and no necrosis. Immunohistochemistry demonstrated diffuse S100 positivity in the spindle cells. The large pleomorphic cells were weakly positive for alpha-sarcomeric actin and myoglobin, although variably but strongly positive for desmin. Management involved a small en bloc resection of the maxilla. After 33 months there was no sign of recurrence or distant metastasis. It was concluded that low-grade variants of MTT occur that do not have an aggressive clinical course.
Resumo:
AIM:
To utilise a novel method for making measurements in the anterior chamber in order to compare the anterior chamber angles of people of European, African, and east Asian descent aged 40 years and over.
METHODS:
A cross sectional study on 15 people of each sex from each decade from the 40s to the 70s, from each of three racial groups-black, white, and Chinese Singaporeans. Biometric gonioscopy (BG) utilises a slit lamp mounted reticule to make measurements from the apparent iris insertion to Schwalbe's line through a Goldmann one mirror goniolens. The main outcome measures were BG measurements of the anterior chamber angle as detailed above.
RESULTS:
There was no significant difference in angle measurement between black, white, and Chinese races in this study. However, at younger ages people of Chinese race appeared to have deeper angles than white or black people, whereas the angles of older Chinese were significantly narrower (p = 0.004 for the difference in slope of BG by age between Chinese and both black and white people).
CONCLUSION:
The failure to detect a difference in angle measurements between these groups was surprising, given the much higher prevalence of angle closure among Chinese. It appears that the overall apparent similarity of BG means between Chinese and Western populations may mask very different trends with age. The apparently more rapid decline in angle width measurements with age among Chinese may be due to the higher prevalence of cataract or "creeping angle closure." However, longitudinal inferences from cross sectional data are problematic, and this may represent a cohort phenomenon caused by the increasing prevalence of myopia in the younger Singaporean population.
Resumo:
Adult sex ratio (ASR) has critical effects on behavior and life history and has implications for population demography, including the invasiveness of introduced species. ASR exhibits immense variation in nature, yet the scale dependence of this variation is rarely analyzed. In this study, using the generalized multilevel models, we investigated the variation in ASR across multiple nested spatial scales and analyzed the underlying causes for an invasive species, the golden apple snail Pomacea canaliculata. We partitioned the variance in ASR to describe the variations at different scales and then included the explanatory variables at the individual and group levels to analyze the potential causes driving the variation in ASR. We firstly determined there is a significant female-biased ASR for this species when accounting for the spatial and temporal autocorrelations of sampling. We found that, counter to nearly equal distributed variation at plot, habitat and region levels, ASR showed little variation at the town level. Temperature and precipitation at the region level were significantly positively associated with ASR, whereas the individual weight, the density characteristic, and sampling time were not significant factors influencing ASR. Our study suggests that offspring sex ratio of this species may shape the general pattern of ASR in the population level while the environmental variables at the region level translate the unbiased offspring sex ratio to the female-biased ASR. Future research should consider the implications of climate warming on the female-biased ASR of this invasive species and thus on invasion pattern.
Resumo:
Purpose:
A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer (CRC) with potential diagnostic utility, culminating in publication of a CRC Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal-derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled.
Experimental Design:
We performed multi-region tissue RNA extraction/transcriptomic analysis using Colorectal Specific Arrays on invasive front, central tumor and lymph node regions selected from tissue samples from 25 CRC patients.
Results:
We identified a consensus 30 gene list which represents the intratumoral heterogeneity within a cohort of primary CRC tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential (HR=2.914 (CI 0.9286-9.162) in stage II/III CRC patients, but in addition we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread Epithelial Mesenchymal Transition (EMT). Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analysed.
Conclusions:
Gene expression profiles derived from the non-malignant stromal region can influence assignment of CRC transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision-making in CRC.
Resumo:
According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.
Resumo:
According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.
Resumo:
This study examines the Social Dominance Orientation of players of the online roleplaying game World of Warcraft. The World of Warcraft offers an opportunity to investigate social dominance and biological sex differences in an environment where there is no cultural dominance of one sex over another. Social Dominance Orientation has been found to be different between males and females, with males scoring higher. However, this might be the consequence of social context. To this end sex differences between male and female players were investigated in the World of Warcraft environment, as well as the effects of chosen character sex. Player sex and character sex were found to have effects on Social Dominance Orientation. These results add further support to claims that Social Dominance Orientation has the characteristics of a sexually selected disposition to acquire resources and out-compete rival groups.