945 resultados para rare earth ion
Resumo:
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
Resumo:
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+, treatments. Furthermore, in the control, the plant accumulates Se-75, Co-56, and V-48 all in the order roots>leaves>stems, whereas Tc-95m was in the order leaves>stems>roots. The accumulations of Se-75 and Tc-95m in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.
Resumo:
Located in the Central and West African, Chad, which is not well geological explored, is characterized by Mesozoic- Cenozoic intra-continental rift basins. The boreholes exposed that, during Mesozoic-Cenozoic times, volcanic activities were intense in these basins, but study on volcanic rocks is very weak, especially on those embedded in rift basins, and so far systematic and detailed work has still no carried out. Based on the project of China National Oil and Gas Exploration and Development Corporation, “The analysis of reservoir condition and the evaluation of exploration targets of seven basins in block H in Chad”, and the cooperative project between Institute of Geology and Geophysics, CAS and CNPC International (Chad) Co. Ltd., “Chronology and geochemistry studies on Mesozoic-Cenozoic volcanic rocks from southwestern Chad Basins”, systematic geochronology, geochemistry and Sr-Nd-Pb isotopic geochemistry studies on volcanic rocks from southwestern Chad basins have been done in the thesis for the first time. Detailed geochronological study using whole-rock K-Ar and Ar-Ar methods shows the mainly eruption ages of these volcanic rocks are Late Cretaceous- Paleogene. Volcanic rocks in the well Nere-1 and Figuier-1 from Doba basin are products of the Late Cretaceous which majority of the K-Ar (Ar-Ar) ages fall in the interval 95-75 Ma, whereas volcanic rocks in the well Ronier-1 from Bongor Basin and the Well Acacia-1 from Lake Chad Basin formed in the Paleogene which the ages concentrated in 66-52Ma. Two main periods of volcanic activity can be recognized in the study area, namely, the Late Cretaceous period and the Paleogene period. Volcanic activities have a general trend of south to north migration, but this may be only a local expression, and farther future studies should be carried on. Petrology study exhibits these volcanic rocks from southwestern Chad basins are mainly tholeiitic basalt. Major- and trace elements as well as Sr-Nd-Pb isotopic geochemistry studies show that the late Cretaceous and the Paleogene basalts have a definitely genetic relationship, and magmas which the basalts in southwestern Chad basins derived from were produced by fractional crystallization of olivine and clinopyroxene and had not do suffered from crustal contamination. These basalts are prominently enriched light rare earth elements (LREE), large-ion lithophile elements (LILE) and high field strength elements (HFSE) and depleted compatible elements. They have positive Ba, Pb, Sr, Nb, Ta, Zr, Hf anomalies and negative Th, U, P,Y anomalies. It is possible that the basalts from southwestern Chad basins mainly formed by mixing of depleted mantle (DM) and enriched mantle (EMⅡ) sources. The late Cretaceous basalts have higher (87Sr/86Sr)i ratios than the Paleogene basalts’, whereas have lower (143Nd/144Nd)i ratios than the latter, showing a significant temporal evolution. The mantle sources of the Late Cretaceous basalts may have more enriched mantle(EMⅡ) compositions, whereas those of the Paleogene basalts are relatively more asthenospheric mantle (DM) components. The mantle components with temporal change observed in basalts from Chad basins were probably correlated with the asthenospheric mantle upwelling and lithospheric thinning in Central and Western Africa since Mesozoic. Mesozoic- Cenozoic Volcanism in Chad basins probably is a product of intra- plate extensional stress regime, corresponded to the tectonic setting of the whole West and Central African during Cretaceous. Volcanism is closely correlated with rifting. As time passed from early period to late, the basaltic magma of Chad basins, characterized with shallower genetic depth, higher density and smaller viscosity, probably indicates the gradual strengthening evolution of the rifting. In the initial rife stage, volcanic activities are absent in the study area. Volcanic activities are basiccally corresponded with the strong extensional period of Chad basins, and the eruption of basalts was slightly lagged behind the extensional period. In the post-rift stage (30-0Ma), these basins shifted to the thermal sag phase, volcanic activities in the study area significantly decreased and then terminated.
Resumo:
The Chinese Altai is one of the most important volcanogenic massive sulfide (VMS) deposit districts in China. All orebodies were lenticular or bedded and stratabounded by a suite of early Devonian volcanic-sedimentary rocks. Hydrothermal feeder zones developed under some of the orebodies. All the ores are massive or laminated, and show typical characteristics of VMS deposit. Based on the mineralizing time and the metal assembles, we divide 3 metallogenic stages: 1, Fe orefroming stage associated with basaltic and sedimentary rocks during very early Devonian; 2, Cu-Pb-Zn oreforming stage associated with rhyolitic and sedimentary rocks during early Devonian; 3, Cu-Zn oreforming stage in the dacitic and basaltic rocks during mid. Devonian. The hosting rocks for all orebodies are different, but they show very similar geochemical and isotopic characteristics. All the felsic rocks show enriched lighted rare earth elements (REE) patterns (La/Yb>5), and with an obvious Eu negative anomalies (Eu/Eu*<0.6). In the meanwhile, all the mafic rocks show flat REE pattern and no Eu anomalies. The Ashele basalt show an apparent Ce negative anomalies (Ce/Ce* <0.76), All the volcanic roks in Chinese Altai show the decoupled property between the high field strength elements (HFSE) and large ion lithophile elements (LILE). The negative Nb, Ta characteristics with respect to adjacent elements indicate that subduction-modified source. The Nd(t) of the hosting rocks for all orebodies changed in a small range (-1.5~5), and the (87Sr/86Sr)i change in a big range. The initial Sr value of the hosting rocks in Mengku and Tiemuerte are obviously affected by the seawater (0.705~0.710), and initial Sr values of hosting rocks Ashele change in a small range (0.704~0.706). All Sr-Nd isotopes of ores have the same range with the hosting rocks, indicating that both the ores and volcanic rocks have the same island arc source. The mean sulfur isotopes of sulfides from Ashele and Mengku are 6.2‰ and 3.4‰, respectively, indicating a deep magmatic source. However, the sulfur isotopes of sulfides from Keketale, Tiemuerte and Keyinbulake changed in -15.8‰~9.9‰, -23.5‰~1.87‰, -8.3‰~1.6‰, respectively. And the big sulfur isotope range indicated that the sulfur of the ores was a combination biogenic and magmatic source. All volcanic rocks from the VMS deposits in the southern Chinese Altai show a typical subduction related environments. Based on the regional and locally geological evidence, here we propose that the southern Chinese Altai is an island arc system, and all VMS deposits formed during the lateral accretion process. No VMS deposit formed during the formation of the island arc during Silurian; Fe VMS deposit formed during the beginning of the opening of the backarc basin in very early Devonian; Cu-Pb-Zn VMS deposits formed during the mature stage of the backarc basin in early Devonian; at last the Cu-Zn VMS deposit formed during the rifted stage of the island arc itself.
Resumo:
Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.
Resumo:
The mafic-ultramafic layered intrusions in the Panxi, China contain large V-Ti-magnetite deposits. These layered intrusions are related with the Emeishan continental flood basalts in space and time. Two layered intrusions, Hongge and Xinjie have clear PGE mineralization at the base of the intrusions. Thus the detailed investigations of these two intrusions not only have a geological but also have an economic significance. This thesis aims to characterize the elemental and Sr-Nd isotopic features of diverse rock zones within the intrusion on the basis of systematic studies of the major, trace element and isotope ratios, therefore to constrain the petrogenesis, mantle source and evolution of the Hongge and Xinjie intrusions. Generally, both Hongge and Xinjie intrusions show the same Fe-Ti-rich and Si-M-poor characteristics. They are also enriched in rare-earth elements (REE) and large-ion lithophile elements (LILE) as well as in Sr-Nd isotope ratios (Hongge: initial Sr = 0.7056-0.7076, ε_(Nd)(t) and (Nd/Sm)_N-ε_(Nd)(t) plots, the Hongge intrusion has a similar elemental and isotopic features to the Emeishan low-Ti (LT) basalts, whereas the Xinjie intrusion was close to the Emeishan high-Ti (HT) basalt. Therefore, the Hongge intrusion may be co-genetic with the LT basalt, formed by the partial melting of the spinel-garnet transition mantle that had a slight enriched isotope character. In contrast, the Xinjie intrusion and the HT basalts are probably derived from the garnet-phases mantle with a primitive isotope character. The involvement of the components of mantle wedge into the source is considered to be the major reason of the REE and LILE enrichment and Nd isotope depletion in the Xinjie intrusion. In contrast with the systematic variations in TiO_2 content, Mg#, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios from the lower zone to upper zone, the different rock zones of the Hongge intrusion have no clear Sr-Nd isotope variations. This suggests that the Hongge intrusions were formed by the crystal fractionation from the same magma source. The rhythm may be formed by slow injection of the co-genetic magma during the crystal fractionation. The increase in K_2O and Al_2O_3 contents, REE abundance, and the degree of the REE fractionation in the base of the intrusion, together with the relatively low ε_(Nd)(t) value, may imply that the base of the Hongge intrusion was contaminated with the local crust rocks. Xinjie intrusion shows the clearly elemental and isotopic differences in diverse cumulus cycles. The observation of the systematic variations in TiO_2 content, Mg# value, transition elements (Ni, Cu, Co), REE concentrations, and La/Yb, La/Sm ratios in first cycle was not occurred in second cumulus cycle. In addition, the ε_(Nd)(t) value in second cumulus cycle is apparently higher than that of the first one. Thus the abruptly elemental and isotopic changes at the base of second cycle demonstrate that there is considerable new and depleted magma addition to the residue magma after the crystallization of the first cycle. These features are very similar to those of the well-known PGE-rich Bushveld and Stillwater layered intrusions. The PGE mineralization in Xinjie intrusion is much better than in Hongge intrusion. Therefore, the layered intrusion similar to the Xinjie in Panxi area posses the better prospects for the PGE deposits.
Resumo:
The mechanism of gold ore formation in the eastern Tianshan Mountains, Xinjiang Uygur Autonomous Region, that has been dealt with from various aspects, remains unclear. On the basis of investigations of regional geology, ore deposit geology, and microscopic observations of ores and related rocks of the Jinwozi, the 210, and the Mazhuangshan gold ore deposits, this thesis made a systematic research on the microthermometry of gangue quartz-hosted fluid inclusions, gas, liquid ion and rare earth element compositions and hydrogen, oxygen isotope compositions of sulfide- and quartz-hosted fluid inclusions, and sulfur and lead isotope compositions of sulfide ore minerals from the major ores in the three deposits. On the basis of the above synthetic studies, sources of ore-forming fluids and metals, and mechanism of gold ore formation in the region were discussed. Gas compositions of pyrite- and sphalerite-hosted fluid inclusions were first analyzed in this thesis. Compared with gangue quartz-hosted fluid inclusions, the sulfide-hosted ones are richer in gaseous species CO2, CO, and CH4 etc. Both gas and liquid CO2 are commonly observed in fluid inclusions, whereas halite daughter minerals rarely occur. Ore-forming fluids for the three gold ore deposits are characteristically of medium to low temperatures, medium to low salinities, are rich in CO2 and Na+, K+, Cl" ions. Gas covariation diagrams exhibit linear trends that are interpreted as reflecting mixing between the magamtic fluid and meteoric-derived groundwater. Regarding rare earth element compositions, the Jinwozi and the 210 deposits show moderate to strong LREE/HREE fractionations with negative Eu anomalies. However, the Mazhuangshan deposit shows little LREE/HREE fractionation with positive Eu anomalies. Hydrogen and oxygen isotope compositions of pyrite-hosted fluid inclusions that were first analyzed in this thesis indicate the presence of magmatic water. Hydrogen and oxygen isotope compositions of pyrite- and quartz-hosted fluid inclusions suggest mixing between magmatic water and meteoric-derived groundwater. Sulfur and lead isotope compositions of sulfide ore minerals indicate multi-sources for the metallogenetic materials that range from the crust to the mantle. On the basis of the above synthetic studies, genesis of the gold ore deposits in the eastern Tianshan Mountains was approached. From the Middle-Late Hercynian to Early Indosinian, geodynamic regime of the region was changing from the collisional compression to the post-collisional extension. During the period, magmas were derived from the crust and the mantle and carried metallogenetic materials. Magma intrusion in the upper crust released the magmatic fluids, and drove circulation of groundwater. Mixing of magmatic fluid with groundwater, and extraction of metallogenetic materials from the country rocks are the mechanism for the gold ore formation in the eastern Tianshan Mountains.
Resumo:
The results presented in this thesis have been achieved under the Ph.D. project entitled “Nonaqueous Sol-Gel routes to doped metal oxide nanoparticles: Synthesis, characterization, assembly and properties”. The purpose of this study is the investigation of metal oxide nanostructures doped with metals of a diverse nature, leading to different type of applications. The easier control over the reaction kinetics in solvothermal routes, compared to aqueous methods, allows to better match the reactivity between metal oxide precursors, paving the way to a facile and low temperature production of doped oxides. In this manuscript diverse examples of the exploitation of the “Benzyl Alcohol Route” are discussed. Such a powerful pathway was utilized for the synthesis of transition metal doped zirconia, hafnia and various perovskites, and the study of their magnetic properties, as well as the synthesis of rare earth doped zirconium oxide. A further extension, proving the solidity of the synthetic method, is shown for the preparation of Li4Ti5O12 nanocrystals carrying excellent electrochemical properties for lithium-ion battery applications. Finally, the effect of doping and other reaction parameters on the assembly of the nanocrystals is discussed. These studies were carried out principally at the University of Aveiro, as well as at the University of Montpellier II and at the Seoul National University due to complementary available expertises and equipments.
Resumo:
A new series of nano-sized Ce1-xEuxCrO3 (x = 0.0 to 1.0) with an average particle size of 50 - 80 nm were synthesized using a solution combustion method. Nano-powders Ce1-xEuxCrO3 with the canted antiferromagnetic property exhibited interesting magnetic behaviours including the reversal magnetization and the exchange bias effect. The effect of europium doping as the ion with the smaller radius size and different electron con figuration on structural, magnetic and thermal properties of Ce1-xEuxCrO3 were investigated using various experimental techniques, i.e. DC/AC magnetic susceptibility, heat capacity, thermal expansion, Raman scattering, X-ray photoemission spectroscopy, transmission/scanning electron microscopy, X-ray powder diffraction and neutron scattering. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples confirmed the existence of the spin disorder magnetic phase in Ce1-xEuxCrO3 compounds. The exchange bias phenomenon, which is assigned to the exchange coupling between glassy-like shell and canted antiferromagnetic core, showed the opposite sign in CeCrO3 and EuCrO3 at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. The energy level excitation of samples were examined by an inelastic neutron scattering which was in good agreement with the heat capacity data. Neutron scattering analysis of EuCrO3 was challenging due to the large neutron absorption cross-section of europium. All diffraction patterns of Ce1-xEuxCrO3 showed the magnetic peak attributed to the antiferromagnetic Cr3+ spins while none of the diffraction patterns could detect the magnetic ordering of the rare-earth ions in these samples.
Resumo:
Rare earth elements have occupied an important role in marine geochemical research, particularly as used in the format of REE abundance patterns to describe the geochemical pathways in marine sedimentation and authigenesis. This study concentrates on the distribution pattern of Rare earth elements in the sediments, behavior of Eu and Ce with respect to their occurrence in multiple oxidation states. It also concentrate the depth wise variation of sediment REEs from near shore areas (30m) to deeper depths 200m) in the Arabian Sea. It includes the downcore variation of REEs and other trace elements in the sediment cores and a comparison between the REE distributions of Arabian Sea sediment with the sediments of Andaman Sea. The study gives a general introduction regarding the importance of RRE studies, its occurrence and abundance, electronic configuration, lanthanide contraction, oxidations states and REE supply to the ocean, seawater and sediments.
Resumo:
Rare earth metal ion exchanged (La3+, Ce3+, RE3+) KFAU-Y zeolites were prepared by simple ion-exchange methods and have been characterized using different physico-chemical techniques. In this paper a novel application of solid acid catalysts in the dehydration/ Beckmann rearrangement of aldoximes; benzaldoxime and 4-methoxybenzaldoxime is reported. Dehydration/Beckmann rearrangement reactions of benzaldoxime and 4-methoxybenzaldoxime is carried out in a continuous down flow reactor at 473K. 4-Methoxybenzaldoxime gave both Beckmann rearrangement product (4-methoxyphenylformamide) and dehydration product (4-methoxybenzonitrile) in high overall yields. The difference in behavior of the aldoximes is explained in terms of electronic effects. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream studies show a fast decline in the activity of the catalyst due to neutralization of acid sites by the basic reactant and product molecules.
Resumo:
The investigation of physical properties of matter has progressed so much during the last hundred years. Today physics is divided in to a large distinct group of special branches. These branches are distinguished by the particular area studied, method of investigation and so on. An independent and important branch that has developed is the physics ofthin films.Any object in solid or liquid form with one of its dimensions very much smaller than that of the other two may be called a thin film. It is having only one common property, namely, one of their dimensions is very small, though all their physical properties may be different. Thin layers of oil, floating on the surface of water, with their fascinating colours, have attracted men’s curiosity from time immemorial. The earliest application of thin films was the protective coatings in the form of paints. A thin layer of tin has been used from ancient times to protect copper utensils from corrosion. Indium thin films are used in certain applications on account of their good lubricating property. Relay contacts are coated with thin films of rare earth metals in order to prevent burning due to arcing. Hard coatings are also available using diamond like carbon (i-carbon). The basic properties of thin films are of considerable interest because of their potential applications in various fields of science and technology
Resumo:
The objective of the present work is to improve the textural and structural properties of zeolite-Y through ion exchange with rare earth metals. We meant to obtain a comparative evaluation of the physicochemical properties and catalytic activity of rare earth modified H-Y, Na-Y, K-Y, and Mg-Y zeolites. Friedel-Crafts alkylations of benzene with higher 1- olefins such as 1-octene, 1-decene, and 1dodecene for the synthesis of linear alkylbenzene (LAB) have been selected for the present study. An attempt has also been directed towards the correlation of the enhancement in 2-phenylalkane formation to the improvement in the textural and structural properties upon rare earth modification for the zeolite-Y. The present method for LAB synthesis stands as an effective Green alternative for the existing hydrofluoric acid technology
Resumo:
A new quaternary intermetallic borocarbide TmCo(2)B(2)C has been synthesized via rapid-quench of an arc-melted ingot. Elemental and powder-diffraction analyses established its correct stoichiometry and single-phase character. The crystal structure is isomorphous with that of TmNi(2)B(2)C (I4/mmm) and is stable over the studied temperature range. Above 7 K, the paramagnetic state follows modified Curie-Weiss behavior (chi = C/(T - theta) + chi(0)) wherein chi(0) = 0.008(1) emu mol(-1) with the temperature-dependent term reflecting the paramagnetism of the Tm subsystem: mu(eff) = 7.6(2) mu(B) (in agreement with the expected value for a free Tm(3+) ion) and theta = -4.5(3) K. Long-range ferromagnetic order of the Tm sublattice is observed to develop around similar to 1 K. No superconductivity is detected in TmCo(2)B(2)C down to 20 mK, a feature which is consistent with the general trend in the RCo(2)B(2)C series. Finally, the influence of the rapid-quench process on the magnetism (and superconductivity) of TmNi(2)B(2)C will be discussed and compared to that of TmCo(2)B(2)C.