995 resultados para pore-forming toxin


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different cellulose nanofibers samples were prepared from northern bleached softwood kraft fibers. Fiber diameter distributions were measured from SEM images. Fiber aspect ratios ranging from 84 to 146 were estimated from fiber suspension sedimentation measurements. Three samples had heterogeneous distributions of fiber diameters, while one sample was more homogeneous. Sheet forming experiments using filters with pores ranging from 150 to 5 μm showed that the samples with a heterogeneous distribution of fiber dimensions could be easily formed into sheets at 0. 2% initial solids concentration with all filter openings. On the other hand, sheets could only be formed from the homogenous sample by using 0. 5% or more initial solids content and a lower applied vacuum and smaller filter openings. The forming data and estimated aspect ratios show reasonable agreement with the predictions of the crowding number and percolation theories for the connectivity and rigidity thresholds for fiber suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Code : C/64/09

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure ion exchange of small-pore zeolite K-natrolite allows immobilization of nominally non-exchangeable aliovalent cations such as trivalent europium. A sample exchanged at 3.0(1) GPa and 250 °C contains about 4.7 EuIII ions per unit cell, which is equivalent to over 90 % of the K+ cations being exchanged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the small-pore zeolite natrolite is compressed at ca. 1.5 GPa and heated to ca. 110 °C in the presence of CO2, the unit cell volume of natrolite expands by 6.8% and ca. 12 wt % of CO2 is contained in the expanded elliptical channels. This CO2 insertion into natrolite is found to be reversible upon pressure release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Commercial purity aluminium plate was reduced by rolling under nitrogen in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Analysis of the microstructure showed that the material produced in this way had an ul-trafine grained microstructure. The sheet was roll formed at room temperature to a V-section using commercial roll forming equipment. Two sets of experiments were per-formed; one with a 15 mm radius in the base of the V and the other with a 5 mm radius. The performance in terms of final shape and springback is compared with the same part shape formed by V-die bending. The mechanical properties of the sheet were determined using the tensile test. It has been found that even if the total tensile elongation is close to zero and bending of the material is very limited, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll forming of ultra-high strength steels (UHSS) and other high strength alloys is an advanced manufacturing methodology with the ability of cold forming those materials to complex three-dimensional shapes for lightweight structural applications. Due to their high strength, most of these materials have a reduced ductility which excludes conventional sheet forming methods under cold forming conditions. Roll forming is possible due to its low strains and incremental forming characteristic. Recent research investigates the development of high strength nano-structured aluminum sheet and titanium alloys, as well as their behaviour in roll forming with regard to formability, material behaviour and shape defects. The development of new materials is often limited to small scale samples due to the high preparation costs. In contrast, industrial application needs larger scale tests for validation, especially in roll forming where a minimum sheet length is required to feed the sample trough the roll forming machine. This work describes a novel technique for studying roll forming of a short length of experimental material. DP780 steel strips (500mm – 1300mm length) were welded between two mild steel carrier sheets of similar width and thickness giving an overall strip length of 2m. Roll forming trials were performed and longitudinal edge strain, bow and springback determined on the welded samples and samples formed of full length DP780 strip before and after cut off. The experimental results of this work show that this method gives a reasonable approach for predicting material behavior in roll forming transverse to the rolling direction. In contrast to that significant differences in longitudinal bow were observed between the welded sections and the sections formed of full length DP780 strip; this indicates that the applicability of this method is limited with regard to predicting longitudinal material behavior in roll forming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported.