978 resultados para phase-field models
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.
Resumo:
A sensorless scheme is presented for a two-phase permanent-magnet linear machine targeted for use in marine wave-power generation. This is a field where system reliability is a key concern. The scheme is able to extract the effective inductance and back-emf of the machine's phases simultaneously from measurements of the current ripple present on the power electronic converter. These measurements can then be used to estimate position. An enhancement to the scheme in the presence of spatially-varying mutual inductance between phases allows more accurate and reliable tracking from indutance-based measurements than would otherwise be expected. This scheme is able to operate at any speed including, critically, when stationary. Experimental results show promise for the scheme, although some work to reduce the level of noise would be desirable. © 2013 IEEE.
Resumo:
Turbomachinery noise radiating into the rearward arc is an important problem. This noise is scattered by the trailing edges of the nacelle and the jet exhaust, and interacts with the shear layers between the external flow, bypass stream and jet, en route to the far field. In the past a range of relevant model problems involving semi-infinite cylinders have been solved. However, one limitation of previous solutions is that they do not allow for the jet nozzle to protrude a finite distance beyond the end of the nacelle (or in certain configurations being buried a finite distance upstream). In this paper we use the matrix Wiener-Hopf technique, which will allow precisely the finite nacelle-jet nozzle separation to be included. The crucial step in our work is to factorise a certain matrix as a product of terms analytic and invertible in the upper/lower halves of the complex plane. The way we do this matrix factorisation is quite different in the buried and protruding nozzle cases. In the buried case our solution method is the so-called pole-removal technique. In the technically more demanding protruding case, however, we must first use Pade approximants to generate a uniformly-valid, meromorphic representation of a certain function, before the same pole-removal method can be applied. Sample results are presented, investigating in particular the effects of exit plane stagger. © 2007 by B Veitch and N Peake.
Resumo:
The influence of non-equilibrium condensation on the flow field and performance of a three stage low pressure model steam turbine is examined using modern three dimensional CFD techniques. An equilibrium steam model and a non-equilibrium steam model, which accounts for both subcooling and condensation effects, are used, and have been verified by comparison with test data in an earlier publication [1]. The differences in the calculated flow field and turbine performance with these models show that the latent heat released during condensation influences both the thermodynamic and the aerodynamic performance of the turbine, leading to a change in inlet flow angles of about 5°. The calculated three dimensional flowfield is used to investigate the magnitude and distribution of the additional thermo-dynamic wetness loss arising from steam condensation under non-equilibrium flow conditions. Three simple methods are described to calculate this, and all show that this amounts to around 6.5% of the total losses at the design condition. At other load conditions the wetness losses change in magnitude and axial distribution in the turbine. © 2010 by ASME.
Resumo:
Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. Summary A field programmable gate array (FPGA) based model predictive controller for two phases of spacecraft rendezvous is presented. Linear time-varying prediction models are used to accommodate elliptical orbits, and a variable prediction horizon is used to facilitate finite time completion of the longer range manoeuvres, whilst a fixed and receding prediction horizon is used for fine-grained tracking at close range. The resulting constrained optimisation problems are solved using a primal-dual interior point algorithm. The majority of the computational demand is in solving a system of simultaneous linear equations at each iteration of this algorithm. To accelerate these operations, a custom circuit is implemented, using a combination of Mathworks HDL Coder and Xilinx System Generator for DSP, and used as a peripheral to a MicroBlaze soft-core processor on the FPGA, on which the remainder of the system is implemented. Certain logic that can be hard-coded for fixed sized problems is implemented to be configurable online, in order to accommodate the varying problem sizes associated with the variable prediction horizon. The system is demonstrated in closed-loop by linking the FPGA with a simulation of the spacecraft dynamics running in Simulink on a PC, using Ethernet. Timing comparisons indicate that the custom implementation is substantially faster than pure embedded software-based interior point methods running on the same MicroBlaze and could be competitive with a pure custom hardware implementation.
Resumo:
We present a method for producing dense Active Appearance Models (AAMs), suitable for video-realistic synthesis. To this end we estimate a joint alignment of all training images using a set of pairwise registrations and ensure that these pairwise registrations are only calculated between similar images. This is achieved by defining a graph on the image set whose edge weights correspond to registration errors and computing a bounded diameter minimum spanning tree (BDMST). Dense optical flow is used to compute pairwise registration and we introduce a flow refinement method to align small scale texture. Once registration between training images has been established we propose a method to add vertices to the AAM in a way that minimises error between the observed flow fields and a flow field interpolated between the AAM mesh points. We demonstrate a significant improvement in model compactness using the proposed method and show it dealing with cases that are problematic for current state-of-the-art approaches.
Resumo:
We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian Approximation Potential (GAP) framework, fitted to a database of first principles density functional theory (DFT) calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties only observable using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org.
Resumo:
This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.
Resumo:
In this Letter, the classical two-site-ground-state fidelity (CTGF) is exploited to identify quantum phase transitions (QPTs) for the transverse field Ising model (TFIM) and the one-dimensional extended Hubbard model (EHM). Our results show that the CTGF exhibits an abrupt change around the regions of criticality and can be used to identify QPTs in spin and fermionic systems. The method is especially convenient when it is connected with the density-matrix renormalization group (DMRG) algorithm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Berry phase of a bipartite system described by a Heisenberg XXZ model driven by a one-site magnetic field is investigated. The effect of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the Berry phase is discussed. It is found that the DM interaction affects the Berry phase monotonously. and can also cause sudden change of the Berry phase for some weak magnetic field cases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The spin Hall effect can be induced by both extrinsic impurity scattering and intrinsic spin-orbit coupling in the electronic structure. The HgTe/CdTe quantum well has a quantum phase transition where the electronic structure changes from normal to inverted. We show that the intrinsic spin Hall effect of the conduction band vanishes on the normal side, while it is finite on the inverted side. By tuning the Cd content, the well width, or the bias electric field across the quantum well, the intrinsic spin Hall effect can be switched on or off and tuned into resonance under experimentally accessible conditions.
Resumo:
We theoretically study the spatial behaviors of the spin precession in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field in the system, we obtain the general conditions to generate a persistent spin helix and predict a persistent spin helix pattern in [001]-grown quantum wells. Particularly, we demonstrate that the phase of spin can be locked to propagate in a quantum well with SU(2) symmetry.
Resumo:
This paper proposes a novel phase-locked loop (PLL) frequency synthesizer using single-electron devices (SEDs) and metal-oxide-semiconductor (MOS) field-effect transistors. The PLL frequency synthesizer mainly consists of a single-electron transistor (SET)/MOS hybrid voltage-controlled oscillator circuit, a single-electron (SE) turnstile/MOS hybrid phase-frequency detector (PFD) circuit and a SE turnstile/MOS hybrid frequency divider. The phase-frequency detection and frequency-division functions are realized by manipulating the single electrons. We propose a SPICE model to describe the behavior of the MOSFET-based SE turnstile. The authors simulate the performance of the PILL block circuits and the whole PLL synthesizer. Simulation results indicated that the circuit can well perform the operation of the PLL frequency synthesizer at room temperature. The PILL synthesizer is very compact. The total number of the transistors is less than 50. The power dissipation of the proposed PLL circuit is less than 3 uW. The authors discuss the effect of fabrication tolerance, the effect of background charge and the SE transfer accuracy on the performance of the PLL circuit. A technique to compensate parameter dispersions of SEDs is proposed.
Resumo:
We introduce the concept of the Loschmidt echo (LE) to the space of the reduced density matrix of spin and fermionic systems to study the density matrix LEs (DMLEs) of the one-dimensional extended Hubbard model and the transverse field Ising model. Our results show that the DMLEs are remarkably influenced by the criticality of the system, and the method is a convenient way to study quantum phase transitions.
Resumo:
The self-assembled growth of vertically well-aligned ZnO nanorod arrays with uniform length and diameter on Si substrate has been demonstrated via thermal evaporation and vapor-phase transport. The structural, photoluminescence (PL), and field emission properties of the as-prepared nanorod arrays were investigated. The PL spectrum at 10 K shows a strong and sharp near-band gap emission (NBE) peak ( full width at half-maximum (FWHM) = 4.7 meV) and a weak neglectable deep-level emission (DL) peak (I-NBE/I-DL= 220), which implies its good crystallinity and high optical quality. The room-temperature NBE peak was deduced to the composition of free exciton and its first-order replicas emissions by temperature-dependent PL spectra. The field emission measurements indicate that, with a vacuum gap of 400 Am, the turn-on field and threshold field is as low as 2.3 and 4.2 V/mu m. The field enhancement factor beta and vacuum gap d follows a universal equation.