972 resultados para organic matter input
Resumo:
Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.
Resumo:
The d15N of surface and down-core sediments spanning the last 20-200 kyr from the entire South China Sea (SCS) ranges only from ~3.0 to ~6.5 per mil, with no correlation with discernible paleoclimatic/oceanographic changes. Detailed profiles of the uppermost sediment column, including fluff samples, indicate a minor diagenetic overprint of 0.3-1.2 per mil at the sediment-water interface. The absence of any correlation with reconstructed (glacial-interglacial) changes in primary production, terrigenous input, and/or sea level related basin configuration is attributed to a complete consumption of nitrate during primary production in this marginal basin during at least the last 140,000 years. This, in turn, implies that the d15N of the nitrate used during primary production remained approximately constant during the last climatic cycle. The proposed scenario infers an unchanged nitrogen isotopic composition of the western Pacific subsurface nitrate between glacial and interglacial stages as well as during terminations and thus constrains proposed changes in the oceanic N inventory.
Resumo:
Quantity, type, and maturity of the organic matter of middle Miocene to Quaternary sediments from the eastern North Pacific (Deep Sea Drilling Project Leg 63) were determined. Hydrocarbons and fatty acids in lipid extracts were analyzed by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Kerogens were investigated by Rock-Eval pyrolysis and microscopy, and vitrinite reflectance values were determined. At Site 467, in the San Miguel Gap of the outer California Continental Borderland, organic carbon contents range from 1.46% to 5.40%. Normalized to organic carbon, total extracts increase from about 10 to 36 mg/g Corg with depth. The organic matter is a mixture of both marine and terrestrial origin, with the marine organic matter representing a high proportion in some of the samples. Steroid hydrocarbons - sterenes and steradienes in the upper part of the section and steranes in the deepest sample - are the most abundant compounds in the nonaromatic hydrocarbon fractions. Perylene, alkylated thiophenes, and aromatic steroid hydrocarbons dominate in the aromatic hydrocarbon fractions of the shallower samples; increasing maturation is indicated by a more petroleumlike aromatic hydrocarbon distribution. Microscopy revealed a high amount of liptinitic organic matter and confirmed the maturation trend as observed from analysis of the extracts. The vitrinite reflectance may be extrapolated to a bottom-hole value of nearly 0.5% Ro. The liquid hydrocarbon potential of the sediments at higher maturity levels is rated to be good to excellent. At Site 471, off Baja California, organic carbon values are between 0.70% and 1.12%. Extract values increase with depth, as at Site 467. The investigation of the soluble and insoluble organic matter, despite some compositional similarities, consistently revealed a more terrigenous influx compared with Site 467. Thus the potential for liquid hydrocarbon generation is lower, the organic matter being more gas-prone. The deepest sample analyzed indicates the onset of hydrocarbon generation. At this site, frequent sand intercalations offer pathways for migration and possibly reservoir formation.
Resumo:
Eight different sites from 2300 to 4420 m water depth in the Arabian Sea were sampled for a biochemical quantification of phospholipid concentrations in the sediments. This method serves as a measure of microbial biomass in marine sediments comprising all small-sized organisms, including bacteria, fungi, protozoa and metazoa. Phospholipid concentrations can be converted to carbon units as an estimate of total microbial biomass in the sediments. The average phospholipid concentrations in the surface sediments (0-1 cm) of the 4 abyssal sites ranged from 7 nmol cm?3 at the southern site (SAST, 10°N 65°E, 4425 m) to 29 nmol/cm**3 at the western site (WAST, 16°N 60°E, 4045 m). The high values detected at the abyssal station WAST exceeded those in the literature for other abyssal sites and were comparable to values from the upper continental slope of the NE-Atlantic and the Arctic. At the four continental slope sites in the Arabian Sea, average phospholipid concentrations ranged from 9 to 53 nmol/cm**3 with the maximum values at stations A (2314 m) and D (3142 m) close to the Omani coast. Records of particulate organic carbon flux to the deep sea are available for four of the investigated locations, allowing a test of the hypothesis that the standing stock of benthic microorganisms in the deep sea is controlled by substrate availability, i.e. particle sedimentation. Total microbial biomass in the surface sediments of the Arabian Sea was positively correlated with sedimentation rates, consistent with previous studies of other oceans. The use of the measurement of phospholipid concentrations as a proxy for input of particulate organic matter is discussed.
Resumo:
The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.
Resumo:
Celebes Basin sediments from Ocean Drilling Program Site 767 (Leg 124) containing both marine and terrestrial organic matter have been investigated through palynofacies and geochemical analyses. The main degradation processes affecting or having affected organic matter are recorded in the sedimentary column as shown by ammonium, phosphate and sulfate pore-water profiles, and by petrographic and geochemical analyses of sediments. In the upper part of the sedimentary section (down to 200 mbsf), the decrease of the ratio of total organic carbon to sulfur (TOC/S) with depth, generally related to the sulfate reduction process, is accompanied by an increase of framboidal pyrite content in the marine organic matter, and by an increasing amount of amorphous marine organic matter relative to the total organic matter. However, as the terrestrial organic input also varies with depth, dilution effects are superimposed on diagenesis. This continental supply affects the TOC/S ratio by increasing total organic carbon and decreasing the ability of the bulk organic matter to be metabolized through sulfate reduction. A positive relationship between the TOC/P ratio and the amount of degraded organic matter of marine origin clearly displays the effect of an organic source on the composition of the sediment. Each lithostratigraphic unit possesses its own characteristics in terms of composition and preservation of organic matter. The effects of diagenesis can only be appreciated within a single lithostratigraphic unit and mainly affect the less-resistant marine organic matter.
Resumo:
Authigenic ferromanganese manifestations in bottom sediments from two horizons (0-10 and 240-250 cm) located in the low/high bioproductive transitional zone of the Pacific Ocean were studied. In addition two compositionally different types of micronodules, crusts and ferromanganese nodules were detected in the surface horizon (0-1 cm). Three size fractions (50-100, 100-250, and 250-500 µm) of manganese micronodules were investigated. In terms of surface morphology, color, and shape, the micronodules are divided into dull round (MN1) and angular lustrous (MN2) varieties with different mineral and chemical compositions. MN1 are enriched in Mn and depleted in Fe as compared with MN2. Mn/Fe ratio in MN1 varies from 13 to 14. Asbolane-buserite and birnessite are the major manganese minerals in them. MN2 is mainly composed of vernadite with Mn/Fe ratio from 4.3 to 4.8. Relative to MN1, fraction 50-100 µm of MN2 is enriched in Fe (2.6 times), W (1.8), Mo (3.2), Th (2.3), Ce (5.8), and REE (from 1.2 to 1.8). Relative to counterparts from MN1, separate fractions of MN2 are characterized by greater compositional difference. For example, increase in size of micronodules leads to decrease in contents of Fe (by 10 rel. %), Ce (2 times), W (2.1 times), Mo (2.2 times), and Co (1.5 times). At the same time one can see increase in contents of other elements: Th and Cu (2.1 times), Ni (1.9 times), and REE (from 1.2 to 1.6 times). Differences in chemical and mineral compositions of MN1 and MN2 fractions can be related to alternation of oxidative and suboxidative conditions in the sediments owing to input of labile organic matter, which acts as the major reducer, and allochthonous genesis of MN2.
Resumo:
Organic carbon in bays of the White Sea was studied for the first time in 1987. Bays of various types in the Kandalaksha Gulf and the Onega Gulf were investigated. Concentration of C_org ranged from 3.5 to 9 mg/l. The highest weighted-mean concentration of C_org occurred in shallow bays of the Onega Gulf (Suma Bay - 6.17 mg/l, Kolezhma Bay - 5.25 mg/1); slightly lower levels occurred in the Soroka Bay (4.85 mg/l) and Kem' Bay (4.78 mg/l). The lowest concentrations were in deep bays of the Kandalaksha Gulf (Chupa Bay - 4.35 mg/l, Velikaya Salma Bay - 4.10 mg/l). As a rule C_org concentration decreases with depth in deep-water bays (but increases slightly in the thermocline layer). The key factor governing organic matter concentration in the bays of the Onega Gulf with river runoff is allochthonous terrigenous organic matter, as indicated by negative correlation of C_org with salinity (R=-0.83+/-0.07, p=0.96) and nonsignificant correlation with primary production.
Resumo:
Corg and Norg contents in the acid insoluble mineral fraction were studied in sediments of Site 593. Both decrease systematically from Recent to early Miocene over 425 m of carbonate facies. C/N ratios (7-11) are typically marine and indicate that residual organic matter, bound to clay minerals, was originally scavenged from the marine habitat rather than being of terrigenous origin. Variations of Corg and Norg are almost entirely controlled by rates of sedimentation, which gradually increase from Recent to early Miocene. Preliminary results of carbohydrate distribution indicate that epigenetic and diagenetic processes alter both the concentrations and the ratios of individual monomers with depth. Total carbohydrate concentrations in the samples diminish from 91 µg/g sediment at 18 m sub-bottom depth to 49 µg/g at 335 m. In contrast, sugars in the acid insoluble residue increase with depth, suggesting release of structural polysaccharides and their subsequent association with clay minerals. Ratios of arabinose to fucose, which are about 6:1 in Recent carbonaceous sediments intercepted by sediment traps, vary from 1:1 in the youngest sample to 1:2.5 in the oldest.
Resumo:
AMS-14C dated sediment cores from the Ob and Yenisei estuaries and the adjacent inner Kara Sea were investigated to determine the siliclastic and organic carbon fluxes and their relationship to paleoenvironmental changes. The variability of sediment fluxes during Holocene times is related to the post-glacial sea-level rise and changes in river discharge and coastal erosion input. Whereas during the late/middle Holocene most of the terrigenous sediments were deposited in the estuaries and the areas directly off the estuaries, huge amounts of sediments accumulated on the Kara Sea shelf farther north during the early Holocene before about 9 Cal. kyrs. BP. The maximum accumulation at that time is related to the lowered sea level, increased coastal erosion, and increased river discharge due to the final stage of mountain deglaciation of the Putoran Massif. Increased supply of Yenisei-derived material indicated by peak magnetic susceptibility values probably occurred in climate-related pulses culminating near 11, 10, and 9 Cal. kyrs. BP. As sea level rose, the main Holocene depocenter migrated southward. Based on hydrogen index values and n-alkanes, the organic matter is predominantly of terrigenous origin. Maximum accumulation rates of 1.5 to more than 6 g/cm**2/y occurred in the early Holocene sediments, suggesting more humid climatic conditions with an increased vegetation cover in the source area at that time. In general, high organic carbon accumulation rates characterize the estuaries and the inner Kara Sea as important sink for terrigenous organic carbon. A high-resolution record of Holocene variability of magnetic susceptibility (MS) in an AMS14C-dated sediment core from the northern Yenisei estuary may indicate natural variability of Arctic climate change and river discharge on a centennial to millenial time scale. Short-term maxima in MS probably related to warmer climate, enhanced precipitation, intensified weathering/erosion and increased river discharge, display a frequency of about 300 to 700 years.
Resumo:
Twenty-six core samples from Leg 64, Holes 474, 474A, 477, 478, 479, and 481A in the Gulf of California, were provided by the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Advisory Panel on Organic Geochemistry for analysis. The high heat flow characteristic of the basin provides an opportunity to study the effect of temperature on the diagenesis of organic matter. The contents and carbon isotope compositions of the organic matter and bitumen fractions of different polarity, isoprenoid and normal alkane distributions, and the nature of tetrapyrrole pigments were studied. Relative contents of hydrocarbons and bitumens depend on the thermal history of the deposits. Among other criteria, the nature and content of tetrapyrrole pigments appear to be most sensitive to thermal stress. Whereas only chlorins are present in the immature samples, porphyrins, including VO-porphyrins, appear in the thermally altered deposits, despite the shallow burial depth. Alkane distributions in thermally changed samples are characterized by low values of phytane to 2-C18 ratios and an odd/even carbon preference index close to unity. The thermally altered samples show unusual carbon isotope distributions of the bitumen fractions. The data also provide some evidence concerning the source of the organic matter and the degree of diagenesis.
Resumo:
Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.