917 resultados para operators
Resumo:
为提高理性遗传算法遗传信息的完备性、算法全局收敛性以及算法的整体结构,给出了一个更一般化的理性算子和算法结构,证明了算法的全局收敛性.理论分析和在运动规划问题中的应用结果验证了理性遗传算法的有效性.
Resumo:
水下滑翔机器人具有续航能力强、作业时间长等特点,适合于大范围海洋环境监测应用,可用于构建近海海洋环境立体监测网络。利用近海较好的GPRS网络覆盖条件,设计了基于GPRS网络的近海水下滑翔机器人监控系统。该监控系统不仅实现了在现场监控中心对水下滑翔机器人的监控,还可以通过Internet网络对水下滑翔机器人进行远程监控。文章详细介绍了监控系统的总体架构、GPRS终端硬件设计和系统软件设计。
Resumo:
采用改进GAs算法建立了求解大规模规划的资源分配模型.针对大规模资源分配问题的具体特点,设计了合适的GAs算子,并以实例验证了算法的合理性及有效性。
Resumo:
I address of reconstruction of spatial irregular sampling seismic data to regular grids. Spatial irregular sampling data impairs results of prestack migration, multiple attenuations, spectra estimation. Prestack 5-D volumes are often divided into sub-sections for further processing. Shot gathers are easy to obtain from irregular sampling volumes. My strategy for reconstruction is as follows: I resort irregular sampling gathers into a form of easy to bin and perform bin regularization, then utilize F-K inversion to reconstruct seismic data. In consideration of poor ability of F-K regularization to fill in large gaps, I sort regular sampling gathers to CMP and proposed high-resolution parabolic Radon transform to interpolate data and extrapolate offsets. To strong interfering noise--multiples, I use hybrid-domain high-resolution parabolic Radon transform to attenuate it. F-K regularization demand ultimately for lower computing costs. I proposed several methods to further improve efficiency of F-K inversion: first I introduce 1D and 2D NFFT algorithm for a rapid calculation of DFT operators; then develop fast 1D and 2D CG method to solve least-square equations, and utilize preconditioner to accelerate convergence of CG iterations; what’s more, I use Delaunay triangulation for weight calculation and use bandlimit frequency and varying bandwidth technique for competitive computation. Numerical 2D and 3D examples are offered to verify reasonable results and more efficiency. F-K regularization has poor ability to fill in large gaps, so I rearrange data as CMP gathers and develop hybrid-domain high-resolution parabolic Radon transforms which be used ether to interpolate null traces and extrapolate near and far offsets or suppress a strong interfere noise: multiples. I use it to attenuate multiples to verify performances of our algorithm and proposed routines for industrial application. Numerical examples and field data examples show a nice performance of our method.
Resumo:
The theory researches of prediction about stratigraphic filtering in complex condition are carried out, and three key techniques are put forward in this dissertation. Theoretical aspects: The prediction equations for both slant incidence in horizontally layered medium and that in laterally variant velocity medium are expressed appropriately. Solving the equations, the linear prediction operator of overlaid layers, then corresponding reflection/transmission operators, can be obtained. The properties of linear prediction operator are elucidated followed by putting forward the event model for generalized Goupillaud layers. Key technique 1: Spectral factorization is introduced to solve the prediction equations in complex condition and numerical results are illustrated. Key technique 2: So-called large-step wavefield extrapolation of one-way wave under laterally variant velocity circumstance is studied. Based on Lie algebraic integral and structure preserving algorithm, large-step wavefield depth extrapolation scheme is set forth. In this method, the complex phase of wavefield extrapolation operator’s symbol is expressed as a linear combination of wavenumbers with the coefficients of this linear combination in the form of the integral of interval velocity and its derivatives over depth. The exponential transform of the complex phase is implemented through phase shifting, BCH splitting and orthogonal polynomial expansion. The results of numerical test show that large-step scheme takes on a great number of advantages as low accumulating error, cheapness, well adaptability to laterally variant velocity, small dispersive, etc. Key technique 3: Utilizing large-step wavefield extrapolation scheme and based on the idea of local harmonic decomposition, the technique generating angle gathers for 2D case is generalized to 3D case so as to solve the problems generating and storing 3D prestack angle gathers. Shot domain parallel scheme is adopted by which main duty for servant-nodes is to compute trigonometric expansion coefficients, while that for host-node is to reclaim them with which object-oriented angle gathers yield. In theoretical research, many efforts have been made in probing into the traits of uncertainties within macro-dynamic procedures.
Resumo:
The Second Round of Oil & Gas Exploration needs more precision imaging method, velocity vs. depth model and geometry description on Complicated Geological Mass. Prestack time migration on inhomogeneous media was the technical basic of velocity analysis, prestack time migration on Rugged surface, angle gather and multi-domain noise suppression. In order to realize this technique, several critical technical problems need to be solved, such as parallel computation, velocity algorithm on ununiform grid and visualization. The key problem is organic combination theories of migration and computational geometry. Based on technical problems of 3-D prestack time migration existing in inhomogeneous media and requirements from nonuniform grid, parallel process and visualization, the thesis was studied systematically on three aspects: Infrastructure of velocity varies laterally Green function traveltime computation on ununiform grid, parallel computational of kirchhoff integral migration and 3D visualization, by combining integral migration theory and Computational Geometry. The results will provide powerful technical support to the implement of prestack time migration and convenient compute infrastructure of wave number domain simulation in inhomogeneous media. The main results were obtained as follows: 1. Symbol of one way wave Lie algebra integral, phase and green function traveltime expressions were analyzed, and simple 2-D expression of Lie algebra integral symbol phase and green function traveltime in time domain were given in inhomogeneous media by using pseudo-differential operators’ exponential map and Lie group algorithm preserving geometry structure. Infrastructure calculation of five parts, including derivative, commutating operator, Lie algebra root tree, exponential map root tree and traveltime coefficients , was brought forward when calculating asymmetry traveltime equation containing lateral differential in 3-D by this method. 2. By studying the infrastructure calculation of asymmetry traveltime in 3-D based on lateral velocity differential and combining computational geometry, a method to build velocity library and interpolate on velocity library using triangulate was obtained, which fit traveltime calculate requirements of parallel time migration and velocity estimate. 3. Combining velocity library triangulate and computational geometry, a structure which was convenient to calculate differential in horizontal, commutating operator and integral in vertical was built. Furthermore, recursive algorithm, for calculating architecture on lie algebra integral and exponential map root tree (Magnus in Math), was build and asymmetry traveltime based on lateral differential algorithm was also realized. 4. Based on graph theory and computational geometry, a minimum cycle method to decompose area into polygon blocks, which can be used as topological representation of migration result was proposed, which provided a practical method to block representation and research to migration interpretation results. 5. Based on MPI library, a process of bringing parallel migration algorithm at arbitrary sequence traces into practical was realized by using asymmetry traveltime based on lateral differential calculation and Kirchhoff integral method. 6. Visualization of geological data and seismic data were studied by the tools of OpenGL and Open Inventor, based on computational geometry theory, and a 3D visualize system on seismic imaging data was designed.
Resumo:
In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.
Resumo:
In the petroleum exploration industry, it is very important to simulate the evolvement of wave field beneath our earth in the aspects of time and space quickly and effectively. Because of the huge data size in petroleum exploration and also the strict requirement of time limit in the actual process of production, simplification of models and approximation of algorithm are necessary. At the same time, every fine improvement to algorithm has its great practical significance and use value. Based on the reasons above, this dissertation researches the separable approximation methods of space-wave number domain for One-way Wave Operator and gets the conclusions as follow: 1. It is insufficient to value One-way Wave Operator purely from the mathematical modulus and phase error, while, holding some specific structural character of operator should be more important. Because, the evaluation criterion of One-way Wave Operator’s imaging ability is quite complicate and obscured, which is similar to the evaluation of an artwork. 2. We can not search for a best or most effective One-way Wave Operator approximation solution for all. However, to different speed model and precision requirement the best approximation solution does exist which is maybe also a compromise, because it is very beneficial to One-way Wave Operator to take full advantage of speed model’s pre-tested information.
Resumo:
To improve the efficiency of boundary-volume integral equation technique, this paper is involved in the approximate solutions of boundary-volume integral equation technique. Firstly, based on different interpretations of the self-interaction and extrapolation operators of the resulting boundary integral equation matrix, two different hybrid BEM+Born series modeling schemes are formulated and validated through comparisons with the full-waveform BE numerical solutions for wave propagation simulation in a semicircular alluvial valley and a complex fault model respectively. Numerical experiments indicate that both the BEM+Born series modeling schemes are suitable for complex geological structures and significantly improve computational efficiency especially for the cases of high frequencies and multisource seismic survey. Then boundary-volume integral equation technique is illuminated in detail and verified by modeling wave propagation in complex media. Furthermore, the first-order and second-order Born approximate solutions for the volume-scattering waves are studied and quantified by numerical simulation in different random medium models. Finally, preconditioning generalized minimal residual method is applied to solve boundary-volume integral equation and compared with Gaussian elimination method. Numerical experiments indicate this method makes the calculations more efficient.
Resumo:
Datuming which has not been well solved in complex areas is a long-existing problem in seismic processing and imaging. Theoretically, Wave-equation datuming(WED) works well in the areas with substantial surface topography and areas of complex velocity structure. However, many difficulties still exist in practice. There are three main reasons: (1) It’s difficult to obtain the velocity model. (2) The computational cost is high and the efficiency is low. (3) Reflection waveform distortions are introduced by low S/N ratio in seismic data. The second and third problems are involved in the paper. To improve computational efficiency, DP1 proposed by Fu Li-Yun is applied in WED. Some quantitative and semi-quantitative conclusions of assessing the computational accuracy and efficiency have been obtained by comparing the adaptation of three operators( PS, SSF, DP1) to the surface topography and the lateral velocity variation. Moreover, the impacts of near surface scattering associated with complex surface topography on WED is analyzed theoretically. According to the analysis results, the following conclusions have been obtained. WED is stable and effective when the field data has high S/N ratio and velocity model is accurate. However ,it doesn’t work well when S/N ratio of field data is low. So denoising techniques in process of WED is important for low S/N data. The paper presents the theoretical analysis for the issues facing WED, which is expected to provide a useful reference to the further development of this technology.
Resumo:
The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.
Resumo:
3D wave equation prestack depth migration is the effective tool for obtaining the exact imaging result of complex geology structures. It's a part of the 3D seismic data processing. 3D seismic data processing belongs to high dimension signal processing, and there are some difficult problems to do with. They are: How to process high dimension operators? How to improve the focusing? and how to construct the deconvolution operator? The realization of 3D wave equation prestack depth migration, not only realized the leap from poststack to prestack, but also provided the important means to solve the difficult problems in high dimension signal processing. In this thesis, I do a series research especially for the solve of the difficult problems around the 3D wave equation prestack depth migration and using it as a mean. So this thesis service for the realization of 3D wave equation prestack depth migration for one side and improve the migration effect for another side. This thesis expatiates in five departs. Summarizes the main contents as the follows: In the first part, I have completed the projection from 3D data point area to low dimension are using de big matrix transfer and trace rearrangement, and realized the liner processing of high dimension signal. Firstly, I present the mathematics expression of 3D seismic data and the mean according to physics, present the basic ideal of big matrix transfer and describe the realization of five transfer models for example. Secondly, I present the basic ideal and rules for the rearrange and parallel calculate of 3D traces, and give a example. In the conventional DMO focusing method, I recall the history of DM0 process firstly, give the fundamental of DMO process and derive the equation of DMO process and it's impulse response. I also prove the equivalence between DMO and prestack time migration, from the kinematic character of DMO. And derive the relationship between DMO base on wave equation and prestack time migration. Finally, I give the example of DMO process flow and synthetic data of theoretical models. In the wave equation prestak depth migration, I firstly recall the history of migration from time to depth, from poststack to prestack and from 2D to 3D. And conclude the main migration methods, point out their merit and shortcoming. Finally, I obtain the common image point sets using the decomposed migration program code.In the residual moveout, I firstly describe the Viterbi algorithm based on Markov process and compound decision theory and how to solve the shortest path problem using Viterbi algorithm. And based on this ideal, I realized the residual moveout of post 3D wave equation prestack depth migration. Finally, I give the example of residual moveout of real 3D seismic data. In the migration Green function, I firstly give the concept of migration Green function and the 2D Green function migration equation for the approximate of far field. Secondly, I prove the equivalence of wave equation depth extrapolation algorithms. And then I derive the equation of Green function migration. Finally, I present the response and migration result of Green function for point resource, analyze the effect of migration aperture to prestack migration result. This research is benefit for people to realize clearly the effect of migration aperture to migration result, and study on the Green function deconvolution to improve the focusing effect of migration.
Resumo:
The seismic survey is the most effective prospecting geophysical method during exploration and development of oil/gas. The structure and the lithology of the geological body become increasingly complex now. So it must assure that the seismic section own upper resolution if we need accurately describe the targets. High signal/noise ratio is the precondition of high-resolution. For the sake of improving signal/noise ratio, we put forward four methods for eliminating random noise on the basis of detailed analysis of the technique for noise elimination using prediction filtering in f-x-y domain. The four methods are put forward for settling different problems, which are in the technique for noise elimination using prediction filtering in f-x-y domain. For weak noise and large filters, the response of the noise to the filter is little. For strong noise and short filters, the response of the noise to the filter is important. For the response of the noise, the predicting operators are inaccurate. The inaccurate operators result in incorrect results. So we put forward the method using prediction filtering by inversion in f-x-y domain. The method makes the assumption that the seismic signal comprises predictable proportion and unpredictable proportion. The transcendental information about predicting operator is introduced in the function. The method eliminates the response of the noise to filtering operator, and assures that the filtering operators are accurate. The filtering results are effectively improved by the method. When the dip of the stratum is very complex, we generally divide the data into rectangular patches in order to obtain the predicting operators using prediction filtering in f-x-y domain. These patches usually need to have significant overlap in order to get a good result. The overlap causes that the data is repeatedly used. It effectively increases the size of the data. The computational cost increases with the size of the data. The computational efficiency is depressed. The predicting operators, which are obtained by general prediction filtering in f-x-y domain, can not describe the change of the dip when the dip of the stratum is very complex. It causes that the filtering results are aliased. And each patch is an independent problem. In order to settle these problems, we put forward the method for eliminating noise using space varying prediction filtering in f-x-y domain. The predicting operators accordingly change with space varying in this method. Therefore it eliminates the false event in the result. The transcendental information about predicting operator is introduced into the function. To obtain the predicting operators of each patch is no longer independent problem, but related problem. Thus it avoids that the data is repeatedly used, and improves computational efficiency. The random noise that is eliminated by prediction filtering in f-x-y domain is Gaussian noise. The general method can't effectively eliminate non-Gaussian noise. The prediction filtering method using lp norm (especially p=l) can effectively eliminate non-Gaussian noise in f-x-y domain. The method is described in this paper. Considering the dip of stratum can be accurately obtained, we put forward the method for eliminating noise using prediction filtering under the restriction of the dip in f-x-y domain. The method can effectively increase computational efficiency and improve the result. Through calculating in the theoretic model and applying it to the field data, it is proved that the four methods in this paper can effectively solve these different problems in the general method. Their practicability is very better. And the effect is very obvious.
Resumo:
Objective: Psychosocial crisis and psychiatric disorders are two stressors for suicide action. This study will explore the differences on demographic characteristics, severity of depression, and suicidality of middle-aged and elder crisis line callers under the influences of psychosocial crisis or psychiatric disorders or two simultaneously-mixed stressors, in order to develop effective intervention strategies for crisis line. Methods: Analysis data of 1,092 cases selected from national crisis line callers aged 45 and over who were assessed with “Suicide risk assessment” during the period from December, 2002 to December, 2008. The sample were divided into three groups of psychosocial crisis, mental health problems, and mixed-stressors of three types of general callers (48.2%, 32.3%, 19.5%), callers with current suicide ideation (43.7%, 33.0%, 23.3%) and callers attempted suicide 2 weeks prior to the call (33.6%, 42.3%, 24.1%) respectively according to the operators’ judgments of the callers’ claimed difficult situations and classification system of crisis line database. X2 test and Tukey-type and Multinomial Logistic Regression multiple comparison methods are applied to analysis the differences of the three groups. Results: In agreement with previous studies, more females (71.3%, X2=13.45, P<0.001), especially females influenced by relationship stressors (76.8%, X2=25.12, P<0.001) made the call for crisis. Among general callers, the check-out rates of Major Depression Episode of mixed-stressor callers (78.5%, P<0.001) and problem callers (68.7%, P<0.05) were significantly higher than that of crisis callers (57.1%). The check-out rates of suicide ideation of mixed-stressor callers (71.4%) were significantly higher than that in crisis callers (53.8%, P<0.001) and problem callers (60.9%, P<0.05). The check-out rates of prior suicide attempts of mixed-stressor (16.6%, P<0.05) and problem callers (18.5%, P<0.01) were significantly higher than that of crisis callers (9.8%). More than half of the mixed-stressor callers (51.8%) reported over 50% degree of hopelessness, which was significantly higher than that of crisis callers (35.6%, P<0.01) and problem callers (38.2%, P<0.05). Fewer crisis callers sought medical help than problem and mixed-stressor callers among three types of callers (X2=241.35, 146.56, 50.87; P<0.001). Compare to non-compound crisis callers, the proportion of minor, severe depression and prior depression diagnosis (14.0% vs. 17.4%; 54.9% vs. 65.2%; 0 vs. 2.2%; X2=14.35,P<0.01), suicide ideation (51.1% vs. 64.0%, P<0.05) and prior suicide attempts (8.4% vs. 15.0%, P<0.05) in compound crisis callers were significantly higher. There were more compound crisis callers with over 50% hopelessness (51.9% vs. 31.0%,X2=11.96,P<0.01). Conclusion: As predicted, among middle-aged and elderly participants, mixed-stressor and compound crisis callers were higher in degree of severity of depression and suicidality. Intervention strategies should be developed addressing to specific stressor or stressors. The promotions of crisis callers’ medical help seeking behavior need to be emphasized.
Resumo:
The research of psycho-simulation training on modern operators was raised with the new demands of the technological revolution and the revolution in traditional industries in China. Having reviewed the history and current situation about psychological researches in personnel training in West, Soviet Union, developing countries, including China, the author hold that the principal problems in perssonel technical training in China was that the theoretical exploration of technical ability was neglected. For the solution of the above problems, the overall conception of this research was designed as follows. The intellectual skill plays a more and more important role in elements of technical abilities of workers due to the evergreater progress in modern science and technology, the higher automatic degree in industry. If the intellectual skill in training was emphasiged, the formation of technical ability in whole would be accelerated. For this purpore, the research adopted psycho-simulation method to realize the conception.