977 resultados para one percent
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the differentiation of Nostoc sphaeroides Kutzing to the hormogonia stage. Results showed that differentiation of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration. Following the testing of different sugars, the effects of different lights were examined. It was found that 5 10 μ mol.m(-2)• s(-1) photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80% differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in inducing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.
Resumo:
While underactuated robotic systems are capable of energy efficient and rapid dynamic behavior, we still do not fully understand how body dynamics can be actively used for adaptive behavior in complex unstructured environment. In particular, we can expect that the robotic systems could achieve high maneuverability by flexibly storing and releasing energy through the motor control of the physical interaction between the body and the environment. This paper presents a minimalistic optimization strategy of motor control policy for underactuated legged robotic systems. Based on a reinforcement learning algorithm, we propose an optimization scheme, with which the robot can exploit passive elasticity for hopping forward while maintaining the stability of locomotion process in the environment with a series of large changes of ground surface. We show a case study of a simple one-legged robot which consists of a servomotor and a passive elastic joint. The dynamics and learning performance of the robot model are tested in simulation, and then transferred the results to the real-world robot. ©2007 IEEE.
Resumo:
There is an increasing attention of exploiting compliant materials for the purpose of legged locomotion, because they provide significant advantages in locomotion performance with respect to energy efficiency and stability. Toward establishing a fundamental basis for this line of research, a minimalistic locomotion model of a single legged system is explored in this paper. By analyzing the dynamic behavior of the system in simulation and a physical robotic platform, it is shown that a stable locomotion process can be achieved without the necessity of sensory feedback. In addition, further analysis characterizes the relation between motor control and the natural body dynamics determined by morphological properties such as body mass and spring constant. © 2006 The authors.
Resumo:
The properties of Rashba wave function in the planar one-dimensional waveguide are studied, and the following results are obtained. Due to the Rashba effect, the plane waves of electron with the energy E divide into two kinds of waves with the wave vectors k(1)=k(0)+k(delta) and k(2)=k(0)-k(delta), where k(delta) is proportional to the Rashba coefficient, and their spin orientations are +pi/2 (spin up) and -pi/2 (spin down) with respect to the circuit, respectively. If there is gate or ferromagnetic contact in the circuit, the Rashba wave function becomes standing wave form exp(+/- ik(delta)l)sin[k(0)(l-L)], where L is the position coordinate of the gate or contact. Unlike the electron without considering the spin, the phase of the Rashba plane or standing wave function depends on the direction angle theta of the circuit. The travel velocity of the Rashba waves with the wave vector k(1) or k(2) are the same hk(0)/m*. The boundary conditions of the Rashba wave functions at the intersection of circuits are given from the continuity of wave functions and the conservation of current density. Using the boundary conditions of Rashba wave functions we study the transmission and reflection probabilities of Rashba electron moving in several structures, and find the interference effects of the two Rashba waves with different wave vectors caused by ferromagnetic contact or the gate. Lastly we derive the general theory of multiple branches structure. The theory can be used to design various spin polarized devices.
Resumo:
Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.
Resumo:
A new broadband filter, based on the high level bandgap in 1-D photonic crystals (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si is designed by the plane wave expansion method (PWEM) and the transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-level bandgaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and the PC device. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new broadband filter, based on the high-order band gap in one-dimensional photonic crystal (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si, has been designed by the plane wave expansion method (PWEM) and transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-order band gaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and PC device. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The ballistic spin transport in one-dimensional waveguides with the Rashba effect is studied. Due to the Rashba effect, there are two electron states with different wave vectors for the same energy. The wave functions of two Rashba electron states are derived, and it is found that their phase depend on the direction of the circuit and the spin directions of two states are perpendicular to the circuit, with the +pi/2 and -pi/2 angles, respectively. The boundary conditions of the wave functions and their derivatives at the intersection of circuits are given, which can be used to investigate the waveguide transport properties of Rashba spin electron in circuits of any shape and structure. The eigenstates of the closed circular and square loops are studied by using the transfer matrix method. The transfer matrix M(E) of a circular arc is obtained by dividing the circular arc into N segments and multiplying the transfer matrix of each straight segment. The energies of eigenstates in the closed loop are obtained by solving the equation det[M(E)-I]=0. For the circular ring, the eigenenergies obtained with this method are in agreement with those obtained by solving the Schrodinger equation. For the square loop, the analytic formula of the eigenenergies is obtained first The transport properties of the AB ring and AB square loop and double square loop are studied using the boundary conditions and the transfer matrix method In the case of no magnetic field, the zero points of the reflection coefficients are just the energies of eigenstates in closed loops. In the case of magnetic field, the transmission and reflection coefficients all oscillate with the magnetic field; the oscillating period is Phi(m)=hc/e, independent of the shape of the loop, and Phi(m) is the magnetic flux through the loop. For the double loop the oscillating period is Phi(m)=hc/2e, in agreement with the experimental result. At last, we compared our method with Koga's experiment. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3253752]
Resumo:
We observed a transition from film to vertically well-aligned nanorods for ZnO grown on sapphire (0001) substrates by metalorganic chemical vapor deposition. A growth mechanism was proposed to explain such a transition. Vertically well-aligned homogeneous nanorods with average diameters of similar to 30, 45, 60, and 70 nm were grown with the c-axis orientation. Raman scattering showed that the E-2 (high) mode shifted to high frequency with the decrease of nanorod diameters, which revealed the dependence of nanorod diameters on the stress state. This dependence suggests a stress-driven diameter-controlled mechanism for ZnO nanorod arrays grown on sapphire (0001) substrates. (c) 2005 American Institute of Physics.
Resumo:
We investigate theoretically the light reflectance of a graphene layer prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is shown that the visibility of the graphene layers is enhanced greatly when 1DPC is added, and the visibility can be tuned by changing the incident angle and light wavelengths. This phenomenon is caused by the absorption of the graphene layer and the enhanced reflectance of the 1DPC. (C) 2007 American Institute of Physics.
Resumo:
The thermal entanglement in a two-spin-qutrit system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called 'negativity'. We strictly show that for any temperature the entanglement is symmetric with respect to zero magnetic field. The behavior of negativity is presented for four different cases. We find that the entanglement may be enhanced under a nonuniform magnetic field. Because there is not any necessary and sufficient condition for quantum separability in systems of dimension 3 circle times 3, our results are qualitative, not quantitative. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A technique based on the integrations of the product of amplified spontaneous emission spectrum and a phase function over one mode interval is proposed for measuring gain spectrum for Fabry-Perot semiconductor lasers, and a gain correction factor related to the response function of the optical spectrum analyzer (OSA) is obtained for improving the accuracy of measured gain spectrum. The gain spectra with a difference less than 1.3 cm(-1) from 1500 to 1600 nm are obtained for a 250-mum-long semiconductor laser at the OSA resolution of 0.06, 0.1, 0.2, and 0.5 nm. The corresponding gain correction factor is about 9 cm(-1) at the resolution of 0.5 nm. The gain spectrum measured at the resolution of 0.5 nm has the same accuracy as that obtained by the Hakki-Paoli method at the resolution of 0.06 nm for the laser with the mode interval of 1.3 nm.