982 resultados para lithium ion battery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion implantation experiments were carried out on amorphous (30 K) and crystalline (80 K) solid CO2 using both reactive (D+, H+) and non-reactive (He+) ions, simulating different irradiation environments on satellite and dust grain surfaces. Such ion irradiation synthesized several new species in the ice including ozone (O-3), carbon trioxide (CO3), and carbon monoxide (CO) the main dissociation product of carbon dioxide. The yield of these products was found to be strongly dependent upon the ion used for irradiation and the sample temperature. Ion implantation changes the chemical composition of the ice with recorded infrared spectra clearly showing the coexistence of D-3h and C-2v isomers of CO3, for the first time, in ion irradiated CO2 ice. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural, iono (IL) and thermoluminescence (TL) studies of Zn2SiO4:Sm3+ (1-5 mol%) nanophosphor bombarded with swift heavy ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) cm(-2) have been carried out. The average crystallite sizes for pristine and ion irradiated for 3.91 x 10(12) ions cm(-2) and 21.48 x 10(12) ions cm(-2) were found to be 34, 26 and 20 nm. With increase of ion fluence, the intensity of XRD peaks decreases and FWHM increases. The peak broadening indicates the stress induced point/clusters defects produced due to heavy ion irradiation. IL studies were carried out for different Sm3+ concentrations in Zn2SiO4 by irradiating with ion fluence of 15.62 x 10(12) ions cm(-2). The characteristic emission peaks at similar to 562, 599, 646 and 701 nm were recorded by exciting Si7+ ions in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). These peaks were attributed to (4)G(5/2)-> H-6(5/2) (562 nm), (4)G(5/2)-> H-6(7/2) (599 nm), (4)G(5/2)-> H-6(9/2) (646 nm), and (4)G(5/2)-> H-6(5/2) (701 nm) transitions of Sm3+. The highest emission was recorded at 3 mol% of Sm3+ doped Zn2SiO4. TL studies were carried out for 3 mol% Sm3+ concentration in the fluence range 3.91 x 10(12)-21.48 x 10(12) ions cm(-2). Two U glow peaks at 152 and 223 degrees C were recorded. The kinetic parameters (E, b, and s), were estimated using Chen's peak shape method. Simple glow curve structure (223 degrees C), highly resistive, increase in TL. intensity up to 19.53 x 10(12) ions cm(-2), simple trap distribution makes Zn2SiO4:Sm3+ (3 mol%) phosphor highly useful in radiation dosimetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new naphthalene carbohydrazone based dizinc(II) complex has been synthesized and investigated to act as a highly selective fluorescence and visual sensor for a pyrophosphate ion with a quite low detection limit of 155 ppb; this has also been used to detect the pyrophosphate ion released from polymerase-chain-reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ti0.97Pt0.032+O1.97 and Ti0.97Pt0.034+O2 have been synthesized by a solution combustion method using alanine and glycine as the fuels, respectively. Both crystallize in anatase TiO2 structure with 15 nm average crystallite size. X-ray photoelectron spectroscopy (XPS) confirmed Pt ions are in the 2+ state in Ti0.97Pt0.03O1.97 (alanine) and 4+ state in Ti0.97Pt0.03O2 (glycine). The rate of CO oxidation occurring over Ti0.97Pt0.032+O1.97 (0.76 mu mol.g(-1).s(-1)) is similar to 10, times more than that over Ti0.97Pt0.034+O2 at 60 degrees C (0.08 mu mol.g(-1).s(-1)). A large shift in 100% hydrocarbons conversion to lower temperature was observed for Pt2+ ion-substituted TiO2 relative 10 that for Pt4+ ion-substituted TiO2. After reoxidation of the reduced compound by H-2 as well as CO, Pt ions are stabilized in mixed valences, 2+ and 4+ states. The role of oxide ion vacancy has been demonstrated by CO oxidation and H-2 + O-2 recombination reactions in the presence and absence of O-2. We analyze the activated lattice oxygens upon substitution of Pt2+ and Pt4+ ions in TiO2, using first-principles density functional theory (DFT) calculations with supercells of Ti31Pt1O63, Ti30Pt2O62, and Ti29Pt3O61 for Pt2+ ion substitution and Ti31Pt1O64, Ti30Pt2O62, and Ti29Pt3O61 for Pt4+ ion substitution in TiO2. We find that the local structure of Pt2+ ion has a distorted square planar geometry and that of Pt4+ ion has an octahedral geometry similar to that of Ti4+ ion in pure TiO2. The change in coordination of Pt2+ ion gives rise to weakly bonded oxygens, and these oxygens are involved in high rates of catalytic reaction. Thus, the high catalytic activity results from synergistic roles of Pt2+ ion and oxide ion vacancy and weakly bonded lattice oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study demonstrates the utility of ternary ion-pair complex formed among BINOL (1,1'-Bi-2-naphthol), a carboxylic acid and an organic base, such as, dimethylpyridine (DMAP), 1,4-diazabicyclo2.2.2]octane (DABCO), as a versatile chiral solvating agent (CSA) for the enantiodiscrimination of carboxylic acids, measurement of enantiomeric excess (ee) and the assignment of absolute configuration of hydroxy acids. The proposed mechanism of ternary complex has wider application for testing the enantiopurity owing to the fact that the binary mixture using BINOL alone does not serve as a solvating agent for their discrimination. In addition, the developed protocol has an excellent utility for the assignment of the absolute configurations of hydroxy acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anti-Markovnikov geminal oxyamination of styrenyl alkenes in an intermolecular fashion using the umpolung strategy mediated by the bromonium ion is reported. Isotope labeling studies confirm the migration of the phenyl group in the semipinacol rearrangement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a technique to vary the electric field within a cylindrical ion trap (CIT) mass spectrometer while it is in operation. In this technique, the electrodes of the CIT are split into number of mini-electrodes and different voltages are applied to these split-electrodes to achieve the desired field. In our study we have investigated two geometries of the split-electrode CIT. In the first, we retain the flat endcap electrodes of the CIT but split the ring electrode into five mini-rings. In the second configuration, we split the ring electrode of the CIT into three mini-rings and also divide the endcaps into two mini-discs. By applying different potentials to the mini-rings and mini-discs of these geometries we have shown that the field within the trap can be optimized to desired values. In our study, two different types of fields were targeted. In the first, potentials were adjusted to obtain a linear electric field and, in the second, a controlled higher order even multipole field was obtained by adjusting the potential. We have shown that the different potentials required can be derived from a single RF generator by connecting appropriate capacitor terminations to split electrodes. The field within the trap can be modified by changing the values of the external capacitors. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed alkali metal effect is a long-standing problem in glasses. Electron paramagnetic resonance (EPR) is used by several researchers to study the mixed alkali metal effect, but a detailed analysis of the nearest neighbor environment of the glass former using spin-Hamiltonian parameters was elusive. In this study we have prepared a series of vanadate glasses having general formula (mol %) 40 V2O5-30BaF(2)-(30 - x)LiF-xRbF with x = 5, 10, 15, 20, 25, and 30. Spin-Hamiltonian parameters of V4+ ions were extracted by simulating and fitting to the experimental spectra using EasySpin. From the analysis of these parameters it is observed that the replacement of lithium ions by rubidium ions follows a ``preferential substitution model''. Using this proposed model, we were able to account for the observed variation in the ratio of the g parameter, which goes through a maximum. This reflects an asymmetric to symmetric changeover of. the alkali metal ion environment around the vanadium site. Further, this model also accounts for the variation in oxidation state of vanadium ion, which was confirmed from the variation in signal intensity of EPR spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic structure and properties of sodium iron fluorophosphate Na2FePO4F (space group Pbcn), a cathode material for rechargeable batteries, were studied using magnetometry and neutron powder diffraction. The material, which can be described as a quasi-layered structure with zigzag Fe-octahedral chains, develops a long-range antiferromagnetic order below similar to 3.4 K. The magnetic structure is rationalized as a super-exchange-driven ferromagnetic ordering of chains running along the a-axis, coupled antiferromagnetically by super-super-exchange via phosphate groups along the c-axis, with ordering along the b-axis likely due to the contribution of dipole dipole interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flower-like hierarchical architectures of layered SnS2 have been synthesized ionothermally for the first time, using a water soluble EMIM]BF4 ionic liquid (IL) as the solvent medium. At lower reaction temperatures, the hierarchical structures are formed of few-layered polycrystalline 2D nanosheet-petals composed of randomly oriented nanoparticles of SnS2. The supramolecular networks of the IL serve as templates on which the nanoparticles of SnS2 are glued together by combined effects of hydrogen bonding, electrostatic, hydrophobic and imidazolium stacking interactions of the IL, giving rise to polycrystalline 2D nanosheet-petals. At higher reaction temperatures, single crystalline plate-like nanosheets with well-defined crystallographic facets are obtained due to rapid inter-particle diffusion across the IL. Efficient surface charge screening by the IL favors the aggregation of individual nanosheets to form hierarchical flower-like architectures of SnS2. The mechanistic aspects of the ionothermal bottom-up hierarchical assembly of SnS2 nanosheets are discussed in detail. Li-ion storage properties of the pristine SnS2 samples are examined and the electrochemical performance of the sample synthesized at higher temperatures is found to be comparable to that reported for pristine SnS2 samples in the literature.