913 resultados para liquid chromatography-tandem MS
Resumo:
We found high levels of contaminants, in particular organochlorines, in eggs of the ivory gull Pagophila eburnea, a high Arctic seabird species threatened by climate change and contaminants. An 80% decline in the ivory gull breeding population in the Canadian Arctic the last two decades has been documented. Because of the dependence of the ivory gull on sea ice and its high trophic position, suggested environmental threats are climate change and contaminants. The present study investigated contaminant levels (organochlorines, brominated flame retardants, perfluorinated alkyl substances, and mercury) in ivory gull eggs from four colonies in the Norwegian Svalbard) and Russian Arctic (Franz Josef Land and Severnaya Zemlya). The contaminant levels presented here are among the highest reported in Arctic seabird species, and we identify this as an important stressor in a species already at risk due to environmental change.
Resumo:
Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are membrane lipids produced by soil bacteria and occur in near coastal marine sediments as a result of soil organic matter input. Their abundance relative to marine-derived crenarchaeol, quantified in the BIT index, generally decreases offshore. However, in distal marine sediments, low relative amounts of brGDGTs can often still be observed. Sedimentary in situ production as well as dust input have been suggested as potential, though as yet not well constrained, sources. In this study brGDGT distributions in dust were examined and compared with those in distal marine sediments. Dust was sampled along the equatorial West African coast and brGDGTs were detected in most of the samples, albeit in low abundance. Their degree of methylation and cyclisation, expressed in the MBT' (methylation index of branched tetraethers) and DC (degree of cyclisation) indices, respectively, were comparable with those for African soils, their presumed source. Comparison of DC index values for brGDGTS in global soils, Congo deep-sea river fan sediments and dust with those of distal marine sediments clearly showed, however, that distal marine sediments had significantly higher values. This distinctive distribution is suggestive of sedimentary in situ production as a source of brGDGTs in marine sediments, rather than dust input. The presence of in situ produced brGDGTs in marine sediments means that caution should be exercised when applying the MBT'-CBT palaeothermometer to sediments with low BIT index values, i.e. < 0.1, based on our dataset.
Resumo:
Antarctic ice-free areas contain lakes and ponds that have interesting limnological features and are of wide global significance as early warning indicators of climatic and environmental change. However, most limnological and paleolimnological studies in continental Antarctica are limited to certain regions. There are several ice-free areas in Victoria Land that have not yet been studied well. There is therefore a need to extend limnological studies in space and time to understand how different geological and climatic features affect the composition and biological activity of freshwater communities. With the aim of contributing to a better limnological characterization of Victoria Land, this paper reports data on sedimentary pigments (used to identify the main algal taxa) obtained through a methodology that is more sensitive and selective than that of previous studies. Analyses were extended to 48 water bodies in ice-free areas with differing lithology, latitude, and altitude, and with different morphometry and physical, chemical, and biological characteristics in order to identify environmental factors affecting the distribution and composition of freshwater autotrophic communities. A wider knowledge of lakes in a limnologically important region of Antarctica was obtained. Cyanophyta was found to be the most important algal group, followed by Chlorophyta and Bacillariophyta, whereas latitude and altitude are the main factors affecting pigment distribution.
Resumo:
The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) highlight the impact of recent atmospheric (Steig et al., 2009, doi:10.1038/nature07669) and oceanic warming (Gille, 2002, doi:10.1126/science.1065863) on the cryosphere. Observations (Cook et al., 2005, doi:10.1126/science.1104235; Stammerjohn et al., 2008, doi:10.1016/j.dsr2.2008.04.026) and models (Pollard and DeConto, 2009, doi:10.1038/nature07809) suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000?years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX86 sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations (Huybers and Denton, 2008, doi:10.1038/ngeo311). On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability (Mayewski et al., 2004, doi:10.1016/j.yqres.2004.07.001). Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions (Moreno et al., 2010, doi:10.1130/G30962.1) and El Niño/Southern Oscillation variability (Conroy et al., 2008, doi:10.1016/j.quascirev.2008.02.015) indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula (Yuan et al., 2004, doi:10.1017/S0954102004002238) strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling (Moreno et al., 2010, doi:10.1130/G30962.1; Anderson et al., 2009, doi:10.1126/science.1167441).
Resumo:
The long-term warmth of the Eocene (~56 to 34 million years ago) is commonly associated with elevated partial pressure of atmospheric carbon dioxide (pCO2). However, a direct relationship between the two has not been established for short-term climate perturbations. We reconstructed changes in both pCO2 and temperature over an episode of transient global warming called the Middle Eocene Climatic Optimum (MECO; ~40 million years ago). Organic molecular paleothermometry indicates a warming of southwest Pacific sea surface temperatures (SSTs) by 3° to 6°C. Reconstructions of pCO2 indicate a concomitant increase by a factor of 2 to 3. The marked consistency between SST and pCO2 trends during the MECO suggests that elevated pCO2 played a major role in global warming during the MECO.
Resumo:
The Mediterranean Sea is at the transition between temperate and tropical air masses and as such of importance for studying climate change. The Gulf of Taranto and adjacent SW Adriatic Sea are at the heart of this region. Their sediments are excellently suited for generating high quality environmental records for the last millennia with a sub-decadal resolution. The quality of these records is dependent on a careful calibration of the transfer functions used to translate the sedimentary lipid signals to the local environment. Here, we examine and calibrate the UK'37 and TEX86 lipid-based temperature proxies in 48 surface sediments and relate these to ambient sea surface temperatures and other environmental data. The UK'37-based temperatures in surface sediments reflect winter/spring sea surface temperatures in agreement with other studies demonstrating maximum haptophyte production during the colder season. The TEX86-based temperatures for the nearshore sites also reflect winter sea surface temperatures. However, at the most offshore sites, they correspond to summer sea surface temperatures. Additional lipid and environmental data including the distribution of the BIT index and remote-sensed chlorophyll-a suggest a shoreward increase of the impact of seasonal and spatial variability in nutrients and control of planktonic archaeal abundance by primary productivity, particle loading in surface waters and/or overprint by a cold-biased terrestrial TEX86 signal. As such the offshore TEX86 values seem to reflect a true summer signal to the effect that offshore UK'37 and TEX86 reconstruct winter and summer temperature, respectively, and hence provide information on the annual temperature amplitude.
Resumo:
This PhD thesis focused on the analysis and application of microbial membrane lipids as biomarkers in marine sediments. Existing protocols for lipid extraction from marine sediments and biomass were modified. In addition, recent protocols based on high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) as well as state-of-the-art mass spectrometric analysis by quadrupole time-of-flight (MSqTOF) and the triple quadrupole (MSQQQ) mass spectrometer were used to investigate matrix effects and evaluate the reliability of quantitative analysis in marine environmental samples. The improved lipid extraction and quantification were used to analyze Black Sea water column and sediments samples to a depth of 8 meters from site GeoB 15105 taken during cruise M84/1 (DARCSEAS) with R/V Meteor to apply lipid analysis in benthic bio systems. With this component specific differentiation between planktonic and benthic lipid signature we assessed possible lipid sources. Here, this high detail lipid fingerprinting allowed us to observe changes in the head group and lipid core structures of the intact polar lipids according to the geochemical zonation.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80-230 µg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8-0.9), but lower and more variable soil-marker BHP concentration (40-100 µg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3-4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.
Resumo:
The mid-Cretaceous is thought to be a greenhouse world with significantly higher atmospheric pCO2 and sea-surface temperatures as well as a much flatter latitudinal thermal gradient compared to the present. This time interval was punctuated by the Cenomanian/Turonian Oceanic Anoxic Event (OAE-2, ~ 93.5 Myr ago), an episode of global, massive organic carbon burial that likely resulted in a large and abrupt pCO2 decline. However, the climatic consequences of this pCO2 drop are yet poorly constrained. We determined the first, high-resolution sea-surface temperature (SST) record across OAE-2 from a deep-marine sedimentary sequence at Ocean Drilling Program (ODP) Site 1276 in the mid-latitudinal Newfoundland Basin, NW Atlantic. By employing the organic palaeothermometer TEX86, we found that SSTs across the OAE-2 interval were extremely high, but were punctuated by a remarkably large cooling (5-11 °C), which is synchronous with the 2.5-5.5 °C cooling in SST records from equatorial Atlantic sites, and the "Plenus Cold Event". Because this global cooling event is concurrent with increased organic carbon burial, it likely acted in response to the associated pCO2 drop. Our findings imply a substantial increase in the latitudinal SST gradient in the proto-North Atlantic during this period of global cooling and reduced atmospheric pCO2, suggesting a strong coupling between pCO2 and latitudinal thermal gradients under greenhouse climate conditions.
Resumo:
Here, we present results from sediments collected in the Argentine Basin, a non-steady state depositional marine system characterized by abundant oxidized iron within methane-rich layers due to sediment reworking followed by rapid deposition. Our comprehensive inorganic data set shows that iron reduction in these sulfate and sulfide-depleted sediments is best explained by a microbially mediated process-implicating anaerobic oxidation of methane coupled to iron reduction (Fe-AOM) as the most likely major mechanism. Although important in many modern marine environments, iron-driven AOM may not consume similar amounts of methane compared with sulfate-dependent AOM. Nevertheless, it may have broad impact on the deep biosphere and dominate both iron and methane cycling in sulfate-lean marine settings. Fe-AOM might have been particularly relevant in the Archean ocean, >2.5 billion years ago, known for its production and accumulation of iron oxides (in iron formations) in a biosphere likely replete with methane but low in sulfate. Methane at that time was a critical greenhouse gas capable of sustaining a habitable climate under relatively low solar luminosity, and relationships to iron cycling may have impacted if not dominated methane loss from the biosphere.
Resumo:
A substantial strengthening of the South American monsoon system (SAMS) during Heinrich Stadials (HS) points toward decreased cross-equatorial heat transport as the main driver of monsoonal hydroclimate variability at millennial time-scales. In order to better constrain the exact timing and internal structure of HS1 over tropical South America we assessed two precisely dated speleothem records from central-eastern and northeastern Brazil in combination with two marine records of terrestrial organic and inorganic matter input into the western equatorial Atlantic. During HS1 we recognize at least two events of widespread intensification of the SAMS across the entire region influenced by the South Atlantic Convergence Zone (SACZ) at 16.11-14.69 kyr BP and 18.1-16.66 kyr BP (labeled as HS1a and HS1c, respectively), separated by a dry excursion from 16.66-16.11 kyr BP (HS1b). In view of the spatial structure of precipitation anomalies, the widespread increase of monsoon precipitation over the SACZ domain was termed 'Mega-SACZ'.