990 resultados para line difference
Resumo:
The mode characteristics of a three-dimensional (3D) microdisk with a vertical refractive index distribution of n(2)/3.4/n(2) are investigated by the S-matrix method and 3D finite-difference time-domain (FDTD) technique. For the microdisk with a thickness of 0.2 mu m. and a radius of 1 mu m, the mode wavelengths and quality factors for the HE7,1 mode obtained by 3D FDTD simulation and the S-matrix method are in good agreement as n(2) increases from 1.0 to 2.6. But the Q factor obtained by the 3D FDTD rapidly decreases from 1.12 X 10(4) to 379 as n2 increases from 2.65 to 2.8 owing to the vertical radiation losses, which cannot be predicted by the proposed S-matrix method. The comparisons also show that quality factors obtained from the analytical solution of two-dimensional microdisks under the effective index approximation are five to seven times smaller than those of the 3D FDTD as n(2) = 1 and R = 1 mu m. (c) 2006 Optical Society of America.
Resumo:
Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 mu m, a thickness of 0.2 mu m, and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE71 decreases with an increase of the refractive index of the substrate, n(sub), from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE72 reaches a peak value at n(sub) = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates. (c) 2006 Optical Society of America.
Resumo:
For the InAs/GaAs quantum-dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS) in combination with atomic force microscopy and photoluminescence. One transition related to the light hole in the WL has been observed clearly in RDS, from which its transition energy and in-plane optical anisotropy (OA) are determined. The evolution of WL with the InAs dot formation and ripening has been discussed. In addition, the remarkable changes in OA at the onsets of the dot formation and ripening have been observed, implying the mode transitions of atom transport between the WL and the dots.
Resumo:
Si0.75Ge0.25/Si/Si0.5Ge0.5 trilayer asymmetric superlattices were prepared on Si (001) substrate by ultrahigh vacuum chemical vapor deposition at 500 degrees C. The nonlinear optical response caused by inherent asymmetric interfaces in this structure predicted by theories was verified by in-plane optical anisotropy in (001) plane measured via reflectance difference spectroscopy. The results show Si0.75Ge0.25/Si/Si0.5Ge0.5 asymmetric superlattice is optically biaxial and the two optical eigen axes in (001) plane are along the directions [110] and [-110], respectively. Reflectance difference response between the above two eigen axes can be influenced by the width of the trilayers and reaches as large as similar to 10(-4)-10(-3) in 15-period 2.7 nm-Si0.75Ge0.25/8 nm-Si/1.3 nm-Si0.5Ge0.5 superlattice when the normal incident light wavelength is in the range of 500-1100 nm, which is quite remarkable because the optical anisotropy does not exist in bulk Si.
Resumo:
A new finite-difference scheme is presented for the second derivative of a semivectorial field in a step-index optical waveguide with tilt interfaces. The present scheme provides an accurate description of the tilt interface of the nonrectangular structure. Comparison with previously presented formulas shows the effectiveness of the present scheme.
Resumo:
The in-plane optical anisotropies of a series of GaAs/AlxGa1-xAs single-quantum-well structures have been observed at room temperature by reflectance difference spectroscopy. The measured degree of polarization of the excitonic transitions is inversely proportional to the well width. Numerical calculations based on the envelope function approximation incorporating the effect of C-2v-interface symmetry have been performed to analyze the origin of the optical anisotropy. Good agreement with the experimental data is obtained when the optical anisotropy is attributed to anisotropic-interface structures. The fitted interface potential parameters are consistent with predicted values.
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Numerical calculations within the envelope function framework have been performed to analyze the relations between the magnitude of in-plane optical anisotropy and the values of the additional hole-mixing coefficients due to interface and electric field in (001) symmetric GaAs/AlxGa1-xAs superlattices for light propagating along the [001] direction. It is found that the heavy- and light-hole states are mixed independently by interface and electric field. The numeric results demonstrate that the line shape of the in-plane anisotropic spectrum is determined by the ratio of the two hole-mixing coefficients. Theoretical analysis shows that with the help of simple calculation of the anisotropy at k=0, reliable values of the hole-mixing coefficients can be determined by reflectance-difference spectroscopy (IDS) technique, demanding no tedious fitting of experimental curves. The in-plane optical anisotropy measured by RDS provides a new method of getting the information on buried interfaces through the Value of the hole-mixing coefficient due to interface.
Resumo:
The wetting layers (WL) in InAs/GaAs quantum-dot system have been studied by reflectance difference spectroscopy (RDS), in which two structures related to the heavy-hole (HH) and light-hole (LH) transitions in the WL have been observed. The evolution and segregation behaviors of WL during Stranski-Krastanow (SK) growth mode have been studied from the analysis of the WL-related optical transition energies. It has been found that the segregation coefficient of Indium atoms varies linearly with the InAs amount in WL. In addition, the effect of the growth temperature on the critical thickness for InAs island formation has also been studied. The critical thickness defined by the appearance of InAs dots, which is determined by AFM, shows a complex variation with the growth temperature. However, the critical thickness determined by RDS is almost constant in the range of 510-540 degrees C.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
The interface properties of GaNxAs1-x/GaAs single-quantum well is investigated at 80 K by reflectance difference spectroscopy. Strong in-plane optical anisotropies (IPOA) are observed. Numerical calculations based on a 4 band K . P Hamiltonian are performed to analyze the origin of the optical anisotropy. It is found that the IPOA can be mainly attributed to anisotropic strain effect, which increases with the concentration of nitrogen. The origin of the strain component epsilon(xy) is also discussed.