995 resultados para ionic currents
Resumo:
Two ionic liquids, 1-ethylpyridinium docusate (IL1) and tri-n-butyl(2-hydroxyethyl)phosphonium docusate (IL2), were designed and synthesized with the explicit intention of imparting a combination of plasticization and antimicrobial efficacy when incorporated into medical grade poly(vinyl chloride)s (PVCs). The glass transition (T-g) of PVC can be reduced by >20 degrees C on addition of 15 wt% IL2. Both IL1 and IL2 leached to varying extents from the base PVC resins rendering the surface of the PVCs hydrophilic. The antimicrobial activity of both ILs is related to the presence and concentration of both cationic and anionic component of the ILs leached from the PVC and inversely proportional to the extent of PVC gelation. Blends of the PVCs with IL1 displayed antibacterial activity against almost all Gram-positive bacteria tested, including coagulase-negative Staphylococci (CoNS) and methicillin-resistant Staphylococcus aureus (MRSA), but not with IL2 at low concentration in contrast to our previous study when high concentrations of IL2 were used. The more hydrophilic IL1 when added to PVC retards biofilm formation.
Resumo:
Temperature-dependent switching of paramagnetism of a cobalt(ii) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.
Resumo:
The use of a hydrated phosphonium ionic liquid, [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl, for the extraction of microalgæ lipids for biodiesel production, was evaluated using two microalgæ species, Chlorella vulgaris and Nannochloropsis oculata. The ionic liquid extraction was compared to the conventional Soxhlet, and Bligh & Dyer, methods, giving the highest extraction efficiency in the case of C. vulgaris, at 8.1%. The extraction from N. oculata achieved the highest lipid yield for Bligh & Dyer (17.3%), while the ionic liquid extracted 12.8%. Nevertheless, the ionic liquid extraction showed high affinity to neutral/saponifiable lipids, resulting in the highest fatty acid methyl esters (FAMEs)-biodiesel yield (4.5%) for C. vulgaris. For N. oculata, the FAMEs yield of the ionic liquid and Bligh & Dyer extraction methods were similar (>8%), and much higher than for Soxhlet (<5%). The ionic liquid extraction proved especially suitable for lipid extraction from wet biomass, giving even higher extraction yields than from dry biomass, 14.9% and 12.8%, respectively (N. oculata). Remarkably, the overall yield of FAMEs was almost unchanged, 8.1% and 8.0%, for dry and wet biomass. The ionic liquid extraction process was also studied at ambient temperature, varying the extraction time, giving 75% of lipid and 93% of FAMEs recovery after thirty minutes, as compared to the extraction at 100 °C for one day. The recyclability study demonstrated that the ionic liquid was unchanged after treatment, and was successfully reused. The ionic liquid used is best described as [P(CH<inf>2</inf>OH)<inf>4</inf>]Cl·2H<inf>2</inf>O, where the water is not free, but strongly bound to the ions.
Resumo:
The peroxometalate-based polymer immobilized ionic liquid phase catalyst [PO4{WO(O-2)(2)}(4)]@PIILP has been prepared by anion exchange of ring opening metathesis-derived pyrrolidinium-decorated norbornene/ cyclooctene copolymer and shown to be a remarkably efficient system for the selective oxidation of sulfides under mild conditions. A cartridge packed with a mixture of [PO4{WO(O-2)(2)}(4)]@PIILP and silica operated as a segmented or continuous flow process and gave good conversions and high selectivity for either sulfoxide (92% in methanol at 96% conversion for a residence time of 4 min) or sulfone (96% in acetonitrile at 96% conversion for a residence time of 15 min). The immobilized catalyst remained active for 8 h under continuous flow operation with a stable activity/selectivity profile that allowed 6.5 g of reactant to be processed (TON = 46 428) while a single catalyst cartridge could be used for the consecutive oxidation of multiple substrates giving activity-selectivity profiles that matched those obtained with fresh catalyst.
Resumo:
Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl) sulfonyl]imide, [S111][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN111][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, xs, in each solvent to the pure solvent. In this case, xs is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm-1 were observed in the case of the [S 111][TFSI] + ACN and [HN111][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid-solid phase transitions, TS-S, with extremely low melting entropies, indicating a strong organizational structure by easy rotation of methyl group. These ILs can be classified as plastic crystal materials and are promising as ambient-temperature solid electrolytes. © 2013 American Chemical Society.
Resumo:
A number of tetraalkylammonium methylcarbonate and hydrogencarbonate based ionic liquids are shown to be capable of reacting with the naphthenic acids contained in Doba crude oil via a neutralisation reaction. Spectral studies show that the ionic liquids neutralisation mechanism involves the formation of an ionic liquid-naphthenate complex, liberating methanol and carbon dioxide. Extraction of the neutralised complex into a separate methanol phase and subsequent regeneration using aqueous carbonic acid results in ∼70% of the ionic liquid being recovered for recycle. Isolation of the naphthenic acids shows that these make up to 0.85 wt% of the crude oil. Speciation of the naphthenic acids shows a mixture of monocyclic, through to tetracyclic structures with carbon numbers in the range C12-C40.
Resumo:
Electrical conductivity of the supercooled ionic liquid [C8MIM][NTf2], determined as a function of temperature and pressure, highlights strong differences in its ionic transport behavior between low and high temperature regions. To date, the crossover effect which is very well known for low molecular van der Waals liquids has been rarely described for classical ionic liquids. This finding highlights that the thermal fluctuations could be dominant mechanisms driving the dramatic slowing down of ion motions near Tg. An alternative way to analyze separately low and high temperature dc-conductivity data using a density scaling approach was then proposed. Based on which a common value of the scaling exponent [gamma] = 2.4 was obtained, indicating that the applied density scaling is insensitive to the crossover effect. By comparing the scaling exponent [gamma] reported herein along with literature data for other ionic liquids, it appears that [gamma] decreases by increasing the alkyl chain length on the 1-alkyl-3-methylimidazolium-based ionic liquids. This observation may be related to changes in the interaction between ions in solution driven by an increase in the van der Waals type interaction by increasing the alkyl chain length on the cation. This effect may be related to changes in the ionic liquid nanostructural organization with the alkyl chain length on the cation as previously reported in the literature based on molecular dynamic simulations. In other words, the calculated scaling exponent [gamma] may be then used as a key parameter to probe the interaction and/or self-organizational changes in solution with respect to the ionic liquid structure.
Resumo:
In this work, 1-hexene was extracted from its mixtures with n-hexane in varying ratios using a task specific ionic liquid. Herein, the ionic liquid (IL) 1-butyl-3-methylimidazolium nitrate, [BMIM][NO3], was used and examined with and without the addition of a metal salt. The impact of water on both selectivity and distribution coefficient was also tested. Four potential metal salts were investigated, the results of which demonstrate that the dissolution of transition-metal salts in the IL improves the separation of 1-hexene from n-hexane through metal-olefin complexation. Additionally, the presence of water in IL solutions containing metal salt enhances this selectivity. Finally, UNIFAC was used to correlate the experimental LLE data with good accuracy.
Resumo:
The invention relates to a process for dissolving metals (e.g., Al, Cu, Fe, Cr, Sb, Ti, and W) in perhalide contg. ionic liqs. having the formula (I), and to the extn. of metals from mineral ores; the remediation of materials contaminated with heavy, toxic, or radioactive metals; and to the removal of heavy and toxic metals from hydrocarbon streams. In the formula (I), [X] comprises at least one perhalide anion selected from [I3]-, [BrI2]-, [Br2I]-, [ClI2]-, [ClBr2]-, [BrCl2]-, or [ICl2]-, [ClI3]-. The (Cat+) is a cationic species selected from: ammonium, azaannulenium, azathiazolium, benzimidazolium, benzofuranium, benzotriazolium, borolium, cinnolinium, diazabicyclodecenium, diazabicyclononenium, diazabicyclo- undecenium, dithiazolium, furanium, guanidinium, imidazolium, indazolium, indolinium, indolium, morpholinium, oxaborolium, oxaphospholium, oxazinium, oxazolium, iso-oxazolium, oxathiazolium, pentazolium, phospholium, phosphonium, phthalazinium, piperazinium, piperidinium, pyranium, pyrazinium, pyrazolium, pyridazinium, pyridinium, pyrimidinium, pyrrolidinium, pyrrolium, quinazolinium, quinolinium, isoquinolinium, quinoxalinium, selenozolium, sulfonium, tetrazolium, iso-thiadiazolium, thiazinium, thiazolium, thiophenium, thiuronium, triazadecenium, triazinium, triazolium, iso-triazolium, and uronium. [on SciFinder(R)]
Resumo:
Cellulose is dissolved in an ionic liq. without derivatization, and is regenerated in a range of structural forms without requiring the use of harmful or volatile org. solvents. Cellulose soly. and the soln. properties can be controlled by the selection of the ionic liq. constituents, with small cations and halide or pseudohalide anions favoring soln.; dissoln. can be aided by irradn. An ionic liq., [C4mim]Cl, proved to be the best for dissolving cellulose. [on SciFinder(R)]
Resumo:
The invention provides ionic liqs., [R'1CH(OH)CH2]NR'nX (X = anion, R' = alkyl, alkenyl, alkynyl, cycloalkyl, alkylcarbonylalkyl, alkoxy, haloalkyl, haloalkoxy, alkenyloxy, alkynyloxy, cycloalkyloxy, aryl), having a secondary hydroxyl group, and an atom-efficient method for the prepn. of these ionic liqs., by epoxidn. of a protonated nitrogen- contg. org. base (which can optionally be prepd. in situ) in the presence of an anion suitable for supporting ionic liq. formation. Thus, reaction of 1-methylimidazole with HCl in EtOH ∼ 25° followed by treatment with propylene oxide gave 1-(2-hydroxypropyl)-3-methylimidazolium chloride. [on SciFinder(R)]
Resumo:
The ionic liqs. are for the dissoln. of various polymers and/or copolymers, the formation of resins and blends, and the reconstitution of polymer and/or copolymer solns., and the dissoln. and blending of functional additives and/or various polymers and/or copolymers. Thus, ≥1 ionic liq., which is a liq. salt complex that exists in the liq. phase between about -70 to 300°, is mixed with ≥2 differing polymeric materials to form a mixt., and adding a nonsolvent to the mixt. to remove the ionic liq. from the resin or blend. [on SciFinder(R)]
Resumo:
Disclosed are composites comprising regenerated cellulose, a first active substance, a second active substance, and a linker. Thus, microcryst. cellulose was dissolved in 1-butyl-3-methylimidazolium chloride using microwave pulse heating at 120-150°, cooled to 60° to form a super-cooled liq., 20% (based on cellulose) poly(L-lysine hydrobromide) was added therein, homogenized, cast onto a glass plate, the resulting film soaked in water for at least 24 h to leach residual from the film to give a reconstituted cellulose film, showing good transparency. [on SciFinder(R)]