970 resultados para interval of inseminations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Well-preserved and diverse silicoflagellate and ebridian populations are found in the lower and middle Eocene sediments of DSDP Site 605 and the upper Miocene sediments of DSDP Site 604. The ebridians outnumber the silicoflagellates in the siliceous interval of Site 605, but are less numerous at Site 604. The abundances of the various taxa are tabulated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mid-Miocene pelagic sedimentary sections can be correlated using intermediate and high resolution oxygen and carbon isotopic records of benthic foraminifera. Precision of a few tens of thousands of years is readily achievable at sites with high sedimentation rates, for example, Deep Sea Drilling Project sites 289 and 574. The mid-Miocene carbon isotope records are characterized by an interval of high d13C values between 17 and 13.5 Ma (the Monterey Excursion of Vincent and Berger 1985) upon which are superimposed a series of periodic or quasi-periodic fluctuations in d13C values. These fluctuations have a period of approximately 440 kyr, suggestive of the 413 kyr cycle predicted by Milankovitch theory. Vincent and Berger proposed that the Monterey Excursion was the result of increased organic carbon burial in continental margins sediments. The increased d13C values (called 13C maxima) superimposed on the generally high mid-Miocene signal coincide with increases in d18O values suggesting that periods of cooling and/or ice buildup were associated with exceptionally rapid burial of organic carbon and lowered atmospheric CO2 levels. It is likely that during the Monterey Excursion the ocean/atmosphere system became progressively more sensitive to small changes in insolation, ultimately leading to major cooling of deep water and expansion of continental ice. We have assigned an absolute chronology, based on biostratigraphic and magneto-biostratigraphic datum levels, to the isotope stratigraphy and have used that chronology to correlate unconformities, seismic reflectors, carbonate minima, and dissolution intervals. Intervals of sediment containing 13C maxima are usually better preserved than the overlying and underlying sediments, indicating that the d13C values of TCO2 in deep water and the corrosiveness of seawater are inversely correlated. This again suggests that the 13C maxima were associated with rapid burial of organic carbon and reduced levels of atmospheric CO2. The absolute chronology we have assigned to the isotopic record indicates that the major mid-Miocene deepwater cooling/ice volume expansion took 2 m.y. and was not abrupt as had been reported previously. The cooling appears abrupt at many sites because the interval is characterized by a number of dissolution intervals. The cooling was not monotonic, and the 2 m.y. interval included an episode of especially rapid cooling as well as a brief return to warmer conditions before the final phase of the cooling period. The increase in d18O values of benthic foraminifera between 14.9 and 12.9 Ma was greatest at deeper water sites and at sites closest to Antarctica. The data suggest that the d18O value of seawater increased by no more than about 1.1 per mil during this interval and that the remainder of the change in benthic d18O values resulted from cooling in Antarctic regions of deepwater formation. Equatorial planktonic foraminifera from sites 237 and 289 exhibit a series of 0.4 per mil steplike increases in d13C values. Only one of these increases in planktonic d13C is correlated with any of the features in the mid-Miocene benthic carbon isotope record.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El presente artículo es una revisión detallada de estudios científicos publicados que tratan el tema relacionado con la determinación de los elementos de las tierras raras (REEs) en el sistema suelo-planta. Los estudios han sido llevados a cabo principalmente en países europeos y asiáticos. Cabe señalar que la investigación en los países latinoamericanos es muy escasa; sin embargo, es creciente el interés de analizar la aportación de estos elementos al suelo y la planta, lo cual se debe a la aplicación de fertilizantes que contienen dosis elevadas de estos elementos en su composición. Diversas técnicas de muestreo, experimentación y análisis han sido empleadas para la determinación de los REEs. No obstante, se considera que el manejo de los datos ha sido incorrecto estadísticamente. El contenido del presente artículo aborda: (i) las generalidades de los REEs; (ii) el análisis de la bibliografía disponible con el fin de conocer las metodologías de muestreo y análisis más utilizadas en 37 artículos en total, señalando algunos puntos que se consideran todavía deficientes; (iii) dos ejemplos de la aplicación de técnicas estadísticas (intervalo de confianza de la media y pruebas de significancia de la relación F de Fisher y t de Student) utilizando datos reportados en dos artículos. Los resultados mostraron, con los datos del primer artículo analizado, que: a) no se aplicó una metodología estadística para evaluar la calidad de datos; b) al aplicar estadística se encontró que existen diferencias sistemáticas entre los datos determinados en el laboratorio y los certificados. En el segundo artículo analizado se demostró, mediante pruebas de significancia, que existen diferencias significativas en las medias de Ce y Eu (los dos elementos tomados como ejemplos) en las plantas de un sitio a otro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Palynology of two sections recovered during Leg 93 drilling by the Deep Sea Drilling Project in the continental rise along the western margin of the North Atlantic is reported. In Hole 603B at Site 603, the dinoflagellate stratigraphy indicates that the interval from Cores 603B-82 to 603B-26 ranges in age from late Berriasian to Santonian. The BlakeBahama Formation ranges from late Berriasian to Aptian. The Hatteras Formation ranges from Aptian to Cenomanian, although the uppermost part may be Turonian. Dinoflagellate evidence from the middle part of the Plantagenet Formation indicates an age from late Coniacian or early Santonian to Santonian within the interval of Cores 603B-28 to 603B-26. Magnetic polarity evidence of the stratigraphy of the Early Cretaceous for the western North Atlantic indicates a reliable correlation with the dinoflagellate zonation. The stratigraphic sequence of palynologically defined organic facies in carbonaceous claystone lithologies in Hole 603B shows that organic stratigraphic units consisting predominantly of fecal-pellet-derived, pelagic organic matter (xenomorphic facies) alternate with units consisting predominantly of terrigenous organic matter (tracheal and exinitic facies), corresponding to that described from other sites in the North Atlantic. A terrigenous organic facies is identified for the first time from the Plantagenet Formation. The claystone organic facies and major lithofacies are closely correlated. The tracheal and exinitic facies occur in carbonaceous terrigenous claystones and claystone turbidites associated with sandstone/siltstone terrigenous turbidites. The xenomorphic facies occurs in claystones within pelagic limestones lacking any turbidites, and in blackish, noncalcareous claystones which correlate in age with the marine-carbon-rich sapropels which are widespread in the North Atlantic Cenomanian. This facies also occurs with an admixture of terrigenous organic particles in the Blake-Bahama Formation, but the mixture is consistent with the submarine fan setting of this interval. The concentration of refractory organic matter (carbonized particles) in the micrinitic and carbonized tracheal facies is considered to be the result, at least in part, of the oxidation of sediment buried below a surface slowly accumulating pelagic clays below the carbonate compensation depth. The progressive increase in number of dinoflagellate species per stage through the Early Cretaceous (except for the late Barremian-Aptian) may have resulted indirectly from the generally progressive rise in global sea level during this time. At Site 605, the dinoflagellate stratigraphy across the Cretaceous/Tertiary boundary is remarkably close to that published from the Maestrichtian and Danian of Denmark. The Maestrichtian/Danian boundary is placed precisely within Section 605-66-1 by dinoflagellate evidence, agreeing with that predicted by other microfossils. The new dinoflagellate-cyst-based genus, Pierceites and its new species P. schizocystis, and the new combination P. ( = Trithyrodinium) pentagonum (May) are proposed. Diacanthum hollisteri Habib, type species of Diacanthum, is emended to accommodat e cysts with the archeopyle formulas P3'', 2P2''-3'', 2P3''-4'', and 3P2''-3''-4''.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Paleocene-Eocene Thermal Maximum (PETM, ~5 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

At Site 534 in the Blake-Bahama Basin, western North Atlantic, an interval of 68 m of Maestrichtian (Upper Cretaceous) and upper middle to upper Eocene sediments consists of terrigenous siltstones, mudstones, and varicolored zeolitic claystones; minor recovery of micritic limestones, porcellanites, and quartzitic chert was made at this site as well. Comparisons with other Deep Sea Drilling Project (DSDP) sites in the western North Atlantic suggest that the following formations are present in this interval: Hatteras (Maestrichtian), Plantagenet (Maestrichtian and upper Eocene), Bermuda Rise (upper middle to upper Eocene), and the basal Blake Ridge Formation (upper middle to upper Eocene). Recognition of a Tertiary interval of the Plantagenet allows that formation to be divided into lower and upper informal units. Condensation makes this formal lithostratigraphic subdivision difficult. Together the formations record marked net condensed sedimentation (average rate ca. 2.5 m/m.y.) in strongly oxidizing bottom waters. From sedimentary structures and petrography, it is inferred that the terrigenous siltstones and micritic limestones were redeposited from the continental margin by turbidity currents. Chemical data plus petrography confirm relatively high plankton productivity during the upper Eocene. Much of the nonrecovered Eocene interval may represent chert and porcellanite. Fragments recovered were formed by replacement of relatively porous calciturbidites by opal-CT and quartz. Radiolarians in interbedded claystones rich in clinoptilolite show extensive dissolution. Relative to typical hemipelagic sediments, the claystones are enriched in many metals (Cu, Ni, Zn, Pb), particularly within manganese micronodules. The metal accumulation is related to a 30-m.y. period of slow net sediment accumulation, rather than to hydrothermal enrichment or to upward mobilization of metals from the underlying reduced Hatteras black shale facies. Elsewhere in the Blake-Bahama Basin, at Site 391, 22 km to the northwest, upper Eocene facies are missing, reportedly due to deep seafloor erosion of up to 800 m of the sedimentary succession. By contrast, the discovery that this interval is preserved at nearby Site 534 points to much less extensive seafloor erosion, possibly mostly in the Oligocene, which is missing at both DSDP Sites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution biostratigraphic and quantitative studies of subtropical Pacific planktonic foraminiferal assemblages (Ocean Drilling Program, Leg 198 Shatsky Rise, Sites 1209 and 1210) are performed to analyse the faunal changes associated with the Paleocene-Eocene Thermal Maximum (PETM) at about 55.5 Ma. At Shatsky Rise, the onset of the PETM is marked by the abrupt onset of a negative carbon isotope excursion close to the contact between carbonate-rich ooze and overlying clay-rich ooze and corresponds to a level of poor foraminiferal preservation as a result of carbonate dissolution. Lithology, planktonic foraminiferal distribution and abundances, calcareous plankton and benthic events, and the negative carbon isotope excursion allow precise correlation of the two Shatsky Rise records. Results from quantitative analyses show that Morozovella dominates the assemblages and that its maximum relative abundance is coincident with the lowest delta 13C values, whereas subbotinids are absent in the interval of maximum abundance of Morozovella. The excursion taxa (Acarinina africana, Acarinina sibaiyaensis, and Morozovella allisonensis) first appear at the base of the event. Comparison between the absolute abundances of whole specimens and fragments of genera demonstrate that the increase in absolute abundance of Morozovella and the decrease of Subbotina are not an artifact of selective dissolution. Moreover, the shell fragmentation data reveal Subbotina to be the more dissolution-susceptible taxon. The upward decrease in abundance of Morozovella species and the concomitant increase in test size of Morozovella velascoensis are not controlled by dissolution. These changes could be attributed to the species' response to low nutrient supply in the surface waters and to concomitant changes in the physical and chemical properties of the seawater, including increased surface stratification and salinity. Comparison of the planktonic foraminiferal changes at Shatsky Rise to those from other PETM records (Sites 865 and 690) highlights significant similarities, such as the decline of Subbotina at the onset of the event, and discrepancies, including the difference in abundance of the excursion taxa. The observed planktonic foraminifera species response suggests a warm-oligotrophic scenario with a high degree of complexity in the ocean structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Eight deep-sea sediment cores from the North Atlantic Ocean ranging from 31° to 72°N are studied to reconstruct the meridional gradients in surface hydrographic conditions during the interval of minimum ice volume within the last interglacial period. Using benthic foraminiferal ?18O measurements and estimates of Sea Surface Temperature (SST) and Sea Surface Salinity (SSS), we show that summer SSTs and SSSs decreased gradually during the interval of minimum ice volume at high-latitude sites (52°-72°N) whereas they were stable or increased during the same time period at low-latitude sites (31°-41°N). This increase in meridional gradients of SSTs and SSSs may have been due to changes in the latitudinal distribution of summer and annual-average insolation and associated oceanic and atmospheric feedbacks. These trends documented for the Eemian ice volume minimum period are similar to corresponding changes observed during the Holocene and may have had a similar origin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The biostratigraphic distribution and abundance of middle Miocene to Pleistocene silicoflagellates is documented from Ocean Drilling Program (ODP) Leg 138 Holes 844B, 847B, 848B, 849B, 850B, 85 IB, 852B, and 854B from the eastern Equatorial Pacific Ocean. The silicoflagellates were generally abundant and well preserved and frequently exhibited an unusually large range of variation. The upper Miocene of near-equatorial sites includes an assemblage of Bachmannocena diodon nodosa, which includes a bridge across the width of the basal ring. Stratigraphically below this, at sites within 5° of the equator is a lengthy interval of specimens of Distephanus speculum tenuis, which have a fragile apical structure. Both the intervals of Bachmannocena diodon nodosa plexus and Distephanus speculum tenuis are biostratigraphically useful within 5° of the equator, but are less useful beyond that. An unusual range of variation also is observed for Dictyocha in the Pliocene sediments at about the point where D. perlaevis and D. messanensis appear in the geologic record. This variation may be explained by hybridization between diverging species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fission product (90Sr-90Y, 137Cs, total beta) and 21OPb-210Po activities were measured in core samples from the temperate vernagtferner (3150 m altitude, Oetztal Alps, Austria). The results show that the investigated fission products are transported with water resulting from melting processes, and are sorbed on dust or dirt horizons. These products are, therefore, not suited for dating temperate glaciers. 210Pb is also transported with water and displaced from its original deposition. However, despite large fluctuations, the specific activity of 210Pb decreases with depth, and can be used to estimate accumulation rates and the age of the ice. The average annual accumulation rate amounts to about 80 cm water equivalent, and the deepest sample (81 m i.e. ab. 65 m w. e.) was deposited in the beginning of this century. These results agree with data obtained from other observations on this glacier and show that the 210Pb_method is suitable to date temperate glaciers, if the ice cores cover a time interval of about 100 years (i.e. ab. 4 half-lives of 210Pb). The surface activity of 210Pb was found to be 5 ± 1 dpm per kg of ice in agreement with other locations in the Alps and with measurements of fresh snow.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The distribution of stratigraphically important calcareous nannofossils and planktonic foraminifera has been investigated in the Pliocene-Pleistocene sequences of ODP Sites 652, 653, and 654 (Tyrrhenian Sea-western Mediterranean). Semiquantitative and quantitative methods have been used, and an optimum relative sequence of bioevents based on the calcareous plankton groups has been established. About 30 bioevents in an interval of 5.0 m.y. are considered widely traceable in the area and reasonably synchronous. On the basis of those events, a correlation among the three investigated sequences is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concentrations and d34S and d13C values were determined on SO4, HCO3, CO2, and CH4 in interstitial water and gas samples from the uppermost 400 m of sediment on the Blake Outer Ridge. These measurements provide the basis for detailed interpretation of diagenetic processes associated with anaerobic respiration of electrons generated by organic- matter decomposition. The sediments are anaerobic at very shallow depths (<1 m) below the seafloor. Sulfate reduction is confined to the uppermost 15 m of sediment and results in a significant outflux of oxidized carbon from the sediments. At the base of the sulfate reduction zone, upward-diffusing CH4 is being oxidized, apparently in conjunction with SO4 reduction. CH4 generation by CO2 reduction is the most important metabolic process below the 15-m depth. CO2 removal is more rapid than CO2 input over the depth interval from 15 to 100 m, and results in a slight decrease in HCO3 concentration accompanied by a 40 per mil positive shift in d13C. The differences among coexisting CH4, CO2, and HCO3 are consistent with kinetic fractionation between CH4 and dissolved CO2, and equilibrium fractionation between CO2 and HCO3. At depths greater than 100 m, the rate of input of CO2 (d13C = -25 per mil) exceeds by 2 times the rate of removal of CO2 by conversion to CH4 (d13C of -60 to -65 per mil). This results in an increase of dissolved HCO3 concentration while maintaining d13C of HCO3 relatively constant at +10 per mil. Non-steady-state deposition has resulted in significantly higher organic carbon contents and unusually high (70 meq/l) pore-water alkalinities below 150 m. These high alkalinities are believed to be related more to spontaneous decarboxylation reactions than to biological processes. The general decrease in HCO3 concentration with constant d13C over the depth interval of 200 to 400 m probably reflects increased precipitation of authigenic carbonate. Input-output carbon isotope-mass balance calculations, and carbonate system equilibria in conjunction with observed CO2-CH4 ratios in the gas phase, independently suggest that CH4 concentrations on the order of 100 mmol/kg are present in the pore waters of Blake Outer Ridge sediments. This quantity of CH4 is believed to be insufficient to saturate pore waters and stabilize the CH4*6H2O gas hydrate. Results of these calculations are in conflict with the physical recovery of gas hydrate from 238 m, and with the indirect evidence (seismic reflectors, sediment frothing, slightly decreasing salinity and chlorinity with depth, and pressure core barrel observations) of gas-hydrate occurrence in these sediments. Resolution of this apparent conflict would be possible if CH4 generation were restricted to relatively thin (1-10 m) depth intervals, and did not occur uniformly at all depths throughout the sediment column, or if another methanogenic process (e.g., acetate fermentation) were a major contributor of gas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We reconstruct paleoproductivity at three sites in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088) to investigate the presence and extent of the late Miocene to early Pliocene 'biogenic bloom' from 9 to 3 Ma. Our approach involves construction of multiple records including benthic foraminiferal and CaCO3 accumulation rates, Uvigerina counts, dissolution proxies, and geochemical tracers for biogenic and detrital fluxes. This time interval also contains the so-called late Miocene carbon isotope shift, a well-known decrease in benthic foraminiferal d13C values. We find that the timing of paleoproductivity maxima differs among the three sites. At Site 982 (North Atlantic), benthic foraminifera and CaCO3 accumulation were both at a maximum at ~5 Ma, with smaller peaks at ~6 Ma. The paleoproductivity maximum was centered earlier (~6.6-6.0 Ma) in the tropical Atlantic (Site 925). In the South Atlantic (Site 1088), paleoproductivity increased even earlier, between 8.2 Ma and 6.2 Ma, and remained relatively high until ~5.4 Ma. We note that there is some overlap between the interval of maximum productivity between Sites 925 and 1088, as well as the minor productivity increase at Site 982. We conclude that the paleoproductivity results support hypotheses aiming to place the biogenic bloom into a global context of enhanced productivity. In addition, we find that at all three sites the d13C shift is accompanied by carbonate dissolution. This observation is consistent with published studies that have sought a relationship between the late Miocene carbon isotope shift and carbonate preservation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recovery from the end-Permian mass extinction is frequently described as delayed, with complex ecological communities typically not found in the fossil record until the Middle Triassic epoch. However, the taxonomic diversity of a number of marine groups, ranging from ammonoids to benthic foraminifera, peaked rapidly in the Early Triassic. These variations in biodiversity occur amidst pronounced excursions in the carbon isotope record, which are compatible with episodes of massive CO2 outgassing from the Siberian Large Igneous Province. Here we present a high-resolution Early Triassic temperature record based on the oxygen isotope composition of pristine apatite from fossil conodonts. Our reconstruction shows that the beginning of the Smithian substage of the Early Triassic was marked by a cooler climate, followed by an interval of warmth lasting until the Spathian substage boundary. Cooler conditions resumed in the Spathian. We find the greatest increases in taxonomic diversity during the cooler phases of the early Smithian and early Spathian. In contrast, a period of extreme warmth in the middle and late Smithian was associated with floral ecological change and high faunal taxonomic turnover in the ocean. We suggest that climate upheaval and carbon-cycle perturbations due to volcanic outgassing were important drivers of Early Triassic biotic recovery.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Current attempts to understand climatic variability during the early to middle Pliocene require paleoceanographic information from the Pacific and Indian Oceans that may serve to test and/or constrain future circulation models. Ocean Drilling Program (ODP) Sites 885/886 are located in the central subarctic North Pacific at water depths exceeding 5700 m. Recent studies of rock magnetic properties suggest that the fine-grained Fe oxide component in sediment at Sites 885/886 experienced reductive dissolution during the early-middle Gilbert. Because such an interval in the North Pacific Red Clay Province suggests a maximum in the sedimentary flux of organic carbon and/or a minimum in bottom water dissolved O2 concentrations (and hence, a peak change in North Pacific oceanographic conditions), a geochemical investigation was conducted to test the hypothesis. Quaternary sediment at Hole 886B was subjected to an oxyhydroxide removal procedure, and chemical analyses indicate that bulk sediment concentrations of Fe and the Fe/Sc ratio decrease significantly upon reductive dissolution. Downcore chemical analyses of untreated sediment at Hole 886B demonstrate that similar depletions also occur across the proposed interval of reduced sediment. Downcore chemical analyses also indicate that a pronounced increase in the Ba/Sc ratio occurs across the interval. These results are consistent with an interpretation that abyssal sediment of the North Pacific experienced a decrease in redox conditions during the early-middle Gilbert, and that this change in oxidation state was related to a peak in paleoproductivity. If the zenith of late Miocene to middle Pliocene enhanced productivity observed at other Indo-Pacific divergence regions similarly can be constrained to the early-middle Gilbert, there exists an oceanographic boundary condition in which to test future models concerning Pliocene warmth.