997 resultados para interstitial oxygen
Resumo:
Catalytic systems for the direct production of hydrogen peroxide from hydrogen and oxygen are investigated, and the factors which make a successful process identified. The use of low metal loadings, an organic co-solvent (such as ethanol) and reduced palladium as the catalytic metal all lead to good activity and selectivity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The atmospheric pressure plasma jet is a capacitively coupled radio frequency discharge (13.56 MHz) running with a high helium flux (2m3 h-1) between concentric electrodes. Small amounts (0.5%) of admixed molecular oxygen do not disturb the homogeneous plasma discharge. The jet effluent leaving the discharge through the ring-shaped nozzle contains high concentrations of radicals at a low gas temperature—the key property for a variety of applications aiming at treatment of thermally sensitive surfaces. We report on absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence (TALIF) spectroscopy in the jet effluent. Calibration is performed with the aid of a comparative TALIF measurement with xenon. An excitation scheme (different from the one earlier published) providing spectral matching of both the two-photon resonances and the fluorescence transitions is applied.
Resumo:
The coplanar microscale atmospheric pressure plasma jet (µ-APPJ) is a capacitively coupled radio frequency discharge (13.56 MHz, ~15W rf power) designed for optimized optical diagnostic access. It is operated in a homogeneous glow mode with a noble gas flow (1.4 slm He) containing a small admixture of molecular oxygen (~0.5%). Ground state atomic oxygen densities in the effluent up to 2 × 1014 cm-3 are measured by two-photon absorption laser-induced fluorescence spectroscopy (TALIF) providing space resolved density maps. The quantitative calibration of the TALIF setup is performed by comparative measurements with xenon. A maximum of the atomic oxygen density is observed for 0.6% molecular oxygen admixture. Furthermore, an increase in the rf power up to about 15W (depending on gas flow and mixture) leads to an increase in the effluent’s atomic oxygen density, then reaching a constant level for higher powers.
Resumo:
The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz, ~20 W) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen (~0.5%). The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3x1016 cm-3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.
Resumo:
The planar 13.56MHz RF-excited low temperature atmospheric pressure plasma jet (APPJ) investigated in this study is operated with helium feed gas and a small molecular oxygen admixture. The effluent leaving the discharge through the jet’s nozzle contains very few charged particles and a high reactive oxygen species’ density. As its main reactive radical, essential for numerous applications, the ground state atomic oxygen density in the APPJ’s effluent is measured spatially resolved with two-photon absorption laser induced fluorescence spectroscopy. The atomic oxygen density at the nozzle reaches a value of ~1016 cm-3. Even at several centimetres distance still 1% of this initial atomic oxygen density can be detected. Optical emission spectroscopy (OES) reveals the presence of short living excited oxygen atoms up to 10 cm distance from the jet’s nozzle. The measured high ground state atomic oxygen density and the unaccounted for presence of excited atomic oxygen require further investigations on a possible energy transfer from the APPJ’s discharge region into the effluent: energetic vacuum ultraviolet radiation, measured by OES down to 110 nm, reaches far into the effluent where it is presumed to be responsible for the generation of atomic oxygen.
Resumo:
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
The voltammetry for the reduction of oxygen at a microdisk electrode is reported in six commonly used RTILs: [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)dmim][NTf2], [C(4)mim][BF4], [C(4)mim][PF6], and [N-6.2.2.2][NTf2], where [C(4)mim](+) is 1-butyl-3-methylimidazolium, [NTf2](-) is bis(trifluoromethanesulfonyl)imide, [C(4)mpyrr](+) is N-butyl-N-methylpyrrolidinium, [C(4)dmim](+) is 1-butyl-2,3-methylimidazolium, [BF4](-) is tetrafluoroborate, [PF6](-) is hexafluorophosphate, and [N-6.2.2.2](+) is n-hexyltriethylammonium at varying scan rates (50-4000 mV s(-1)) and temperatures (293-318 K). Diffusion coefficients, D, of oxygen are deduced at each temperature from potential-step chronoamperometry, and diffusional activation energies are calculated. Oxygen solubilities are also reported as a function of temperature. In the six ionic liquids, the Stokes-Einstein relationship (D proportional to eta(-1)) was found to apply only very approximately for oxygen. This is considered in relationship to the behavior of other diverse solutes in RTILs.
Resumo:
Absolute atomic oxygen ground state densities in a radio-frequency driven atmospheric pressure plasma jet, operated in a helium-oxygen mixture, are determined using diagnostic based modeling. One-dimensional numerical simulations of the electron dynamics are combined with time integrated optical emission spectroscopy. The population dynamics of the upper O 3p 3P (l=844 nm) atomic oxygen state is governed by direct electron impact excitation, dissociative excitation, radiation losses, and collisional induced quenching. Absolute values for atomic oxygen densities are obtained through comparison with the upper Ar 2p1 (l=750.4 nm) state. Results for spatial profiles and power variations are presented and show excellent quantitative agreement with independent two-photon laser-induced fluorescence measurements.
Resumo:
A tricyclic core structure related to gelsemine was synthesized from an oxabicyclo[3.2.1]octanone by a three-step bridge swapping strategy involving elimination of the bridging ether oxygen and intramolecular Michael addition of a tethered cyanoacetamide unit.