959 resultados para intensification
Resumo:
El desarrollismo como ideología política enervó buena parte de la trama latinoamericana de las décadas de 1950 y de 1960. Si bien muchas veces se la puede entender como la mera adaptación del keynesianismo y la economía del desarrollo a las condiciones regionales, sus fuentes ideológicas resultaron mucho más complejas. Su configuración híbrida contuvo una mezcla de nacionalismo, economía del desarrollo, junto con marxismo y positivismo. Entre los ideólogos del desarrollismo argentino, nos interesa estudiar el aporte de un intelectual de formación leninista ortodoxa, Juan José Real, cuya participación resultaría problemática en el contexto de la agudización de la llamada Guerra Fría. En una mirada que combinaba la idea de ley aplicada a la historia y la voluntad como herramienta de cambio, Real sostenía que la etapa histórica que vivía el país requería la formación de un frente político cuyo objetivo debería ser la profundización del desarrollo capitalista, con la colaboración del capital extranjero, como la etapa necesaria para completar la formación de una nación, bajo el liderazgo de una burguesía modernizante.
Resumo:
El desarrollismo como ideología política enervó buena parte de la trama latinoamericana de las décadas de 1950 y de 1960. Si bien muchas veces se la puede entender como la mera adaptación del keynesianismo y la economía del desarrollo a las condiciones regionales, sus fuentes ideológicas resultaron mucho más complejas. Su configuración híbrida contuvo una mezcla de nacionalismo, economía del desarrollo, junto con marxismo y positivismo. Entre los ideólogos del desarrollismo argentino, nos interesa estudiar el aporte de un intelectual de formación leninista ortodoxa, Juan José Real, cuya participación resultaría problemática en el contexto de la agudización de la llamada Guerra Fría. En una mirada que combinaba la idea de ley aplicada a la historia y la voluntad como herramienta de cambio, Real sostenía que la etapa histórica que vivía el país requería la formación de un frente político cuyo objetivo debería ser la profundización del desarrollo capitalista, con la colaboración del capital extranjero, como la etapa necesaria para completar la formación de una nación, bajo el liderazgo de una burguesía modernizante.
Resumo:
The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1B sediment core recovered from beneath the Ross Ice Shelf. We provide evidence for a major expansion of an ice sheet in the Ross Sea that began at ~3.3 Ma, followed by a coastal sea surface temperature cooling of ~2.5°C, a stepwise expansion of sea ice, and polynya-style deep mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification of Antarctic cooling resulted in strengthened westerly winds and invigorated ocean circulation. The associated northward migration of Southern Ocean fronts has been linked with reduced Atlantic Meridional Overturning Circulation by restricting surface water connectivity between the ocean basins, with implications for heat transport to the high latitudes of the North Atlantic. While our results do not exclude low-latitude mechanisms as drivers for Pliocene cooling, they indicate an additional role played by southern high-latitude cooling during development of the bipolar world.
Resumo:
The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) - induced by the closure of the gateway - was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling.
Resumo:
During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin.We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling-Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling-Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and d18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions.We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1ml/l and caused laminae preservation. Calculated benthic-planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling-Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730-990 yr during the Bølling-Allerød, 800-1100 yr in the Younger Dryas, and 765-775 yr for the Preboreal.
Resumo:
Foraminiferal analysis of Miocene to recent strata of the Northwest Shelf of Australia is used to chart West Pacific Warm Pool (WPWP) influence. The assemblage is typified by "larger" foraminifera with ingressions of the Indo-Pacific "smaller" taxa Asterorotalia and Pseudorotalia at around 4 Ma and from 1.6 to 0.8 Ma. A review of recent and fossil biogeography of these taxa suggests their stratigraphic distribution can be used to document WPWP evolution. From 10 to 4.4 Ma a lack of biogeographic connectivity between the Pacific and Indian Ocean suggests Indonesian Throughflow (ITF) restriction. During this period, the collision of Australia and Asia trapped warmer waters in the Pacific, creating a central WPWP biogeographic province from the equator to 26°N. By 3 Ma Indo-Pacific species migrated to Japan with the initiation of the "modern" Kuroshio Current coinciding with the intensification of the North Pacific Gyre and Northern Hemisphere ice sheet expansion. Indo-Pacific taxa migrated to the northwest Australia from 4.4 to 4 Ma possibly because of limited ITF. The absence of Indo-Pacific taxa in northwest Australia indicates possible ITF restriction from 4 to 1.6 Ma. Full northwest Australian biogeographic connectivity with the WPWP from 1.6 to 0.8 Ma suggests an unrestricted stronger ITF (compared to today) and the initiation of the modern Leeuwin Current. The extinction of some Indo-Pacific species in northwest Australia after 0.8 Ma may be related to the effects of large glacial/interglacial oscillations and uplift of the Indonesian Archipelago causing Indonesian seaway restriction.
Resumo:
Late Miocene-Recent micropaleontological and geochemical records from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) indicate that increase and decrease in abundance of siliceous plankton may be controlled mainly by the input of nutrients derived from land and provided by upwelling. A high export production event - a "biogenic bloom" event - occurred in the southern SCS between 12 and 6 Ma. During this period, high ratios of smectite/(illite + chlorite), smectite/quartz and Al/K indicate a high weathering intensity of the Asian continent, possibly due to the intensification of the East Asian Summer Monsoon (EASM), which may have increased the net flux of nutrients to the ocean, both directly through terrestrial input and indirectly through upwelling activity. A drop in Ba/Ti, Al/Ti and Ca/Ti values around 6 Ma may indicate a lowering of productivity, possibly due to the large consumption of sea surface nutrients by the "biogenic bloom". Alternatively, it may indicate a shift in terrigenous input source area. At about 5.4 Ma, a decrease in weathering intensity, as indicated by a sudden decrease in the values of smectite/(illite + chlorite), smectite/quartz and Al/K, might have led to a sudden decrease of terrestrial nutrient input to the SCS. We suggest that the biogenic bloom ended when nutrients in surface waters were exhausted, because of a decrease in supply as well as a decrease in upwelling intensity due to weakening of the EASM. As a result, radiolarians were absent in the studied area between ~6 and 3.2 Ma. At ~3.2 Ma, radiolarians began to recover, possibly because the start of Northern Hemispheric glaciation and the rapid uplift of the Tibet Plateau led to intensification of the East Asian monsoon. After the Mid-Pleistocene Climate Transition at 0.9 Ma, the abundance and mass accumulation rates of radiolarians increased, probably as a result of increased upwelling activity driven by the increasing intensity of the summer monsoon.
Resumo:
The Chinese Loess Plateau red clay sequences display a continuous alternation of sedimentary cycles that represent recurrent climatic fluctuations from 2.58 Ma to the Miocene. Deciphering such a record can provide us with vital information on global and Asian climatic variations. Lack of fossils and failure of absolute dating methods made magnetostratigraphy a leading method to build age models for the red clay sequences. Here we test the magnetostratigraphic age model against cyclostratigraphy. For this purpose we investigate the climate cyclicity recorded in magnetic susceptibility and sedimentary grain size in a red clay section previously dated 11Myr old with magnetostratigraphy alone. Magnetostratigraphy dating based on only visual correlation could potentially lead to erroneous age model. In this study the correlation is executed through the iteration procedure until it is supported by cyclostratigraphy; i.e., Milankovitch cycles are resolved in the best possible manner. Our new age model provides an age of 5.2Ma for the Shilou profile. Based on the new age model, wavelet analysis reveals the well-preserved 400 kyr and possible 100 kyr eccentricity cycles on the eastern Chinese Loess Plateau. Further, paleomonsoon evolution during 2.58-5.2Ma is reconstructed and divided into three intervals (2.58-3.6Ma, 3.6-4.5Ma, and 4.5-5.2Ma). The upper part, the youngest stage, is characterized by a relatively intensified summer monsoon, the middle stage reflects an intensification of the winter monsoon and aridification in Asia, and the earliest stage indicates that summer and winter monsoon cycles may have rapidly altered. The use of cyclostratigraphy along withmagnetostratigraphy gives us an effectivemethod of dating red clay sequences, and our results imply that many presently published age models for the red clay deposits should be perhaps re-evaluated.
Resumo:
The initiation of the Benguela upwelling has been dated to the late Miocene, but estimates of its sea surface temperature evolution are not available. This study presents data from Ocean Drilling Program (ODP) Site 1085 recovered from the southern Cape Basin. Samples of the middle Miocene to Pliocene were analyzed for alkenone-based (UK'37, SSTUK) and glycerol dialkyl glycerol tetraether (GDGT) based (TEX86, TempTEX) water temperature proxies. In concordance with global cooling during the Miocene, SSTUK and TempTEX exhibit a decline of about 8°C and 16°C, respectively. The temperature trends suggest an inflow of cold Antarctic waters triggered by Antarctic ice sheet expansion and intensification of Southern Hemisphere southeasterly winds. A temperature offset between both proxies developed with the onset of upwelling, which can be explained by differences in habitat: alkenone-producing phytoplankton live in the euphotic zone and record sea surface temperatures, while GDGT-producing Thaumarchaeota are displaced to colder subsurface waters in upwelling-influenced areas and record subsurface water temperatures. We suggest that variations in subsurface water temperatures were driven by advection of cold Antarctic waters and thermocline adjustments that were due to changes in North Atlantic deep water formation. A decline in surface temperatures, an increased offset between temperature proxies, and an increase in primary productivity suggest the establishment of the Benguela upwelling at 10 Ma. During the Messinian Salinity Crisis, between 7 and 5 Ma, surface and subsurface temperature estimates became similar, likely because of a strong reduction in Atlantic overturning circulation, while high total organic carbon contents suggest a "biogenic bloom." In the Pliocene the offset between the temperature estimates and the cooling trend was reestablished.
Resumo:
Here we present orbitally-resolved records of terrestrial higher plant leaf wax input to the North Atlantic over the last 3.5 Ma, based on the accumulation of long-chain n-alkanes and n-alkanl-1-ols at IODP Site U1313. These lipids are a major component of dust, even in remote ocean areas, and have a predominantly aeolian origin in distal marine sediments. Our results demonstrate that around 2.7 million years ago (Ma), coinciding with the intensification of the Northern Hemisphere glaciation (NHG), the aeolian input of terrestrial material to the North Atlantic increased drastically. Since then, during every glacial the aeolian input of higher plant material was up to 30 times higher than during interglacials. The close correspondence between aeolian input to the North Atlantic and other dust records indicates a globally uniform response of dust sources to Quaternary climate variability, although the amplitude of variation differs among areas. We argue that the increased aeolian input at Site U1313 during glacials is predominantly related to the episodic appearance of continental ice sheets in North America and the associated strengthening of glaciogenic dust sources. Evolutional spectral analyses of the n-alkane records were therefore used to determine the dominant astronomical forcing in North American ice sheet advances. These results demonstrate that during the early Pleistocene North American ice sheet dynamics responded predominantly to variations in obliquity (41 ka), which argues against previous suggestions of precession-related variations in Northern Hemisphere ice sheets during the early Pleistocene.
Resumo:
Subtropical Gyres are an important constituent of the ocean-atmosphere system due to their capacity to store vast amounts of warm and saline waters. Here we decipher the sensitivity of the (sub)surface North Atlantic Subtropical Gyre with respect to orbital and millennial scale climate variability between ~140 and 70 ka, Marine Isotope Stage (MIS) 5. Using (isotope)geochemical proxy data from surface and thermocline dwelling foraminifers from Blake Ridge off the west coast of North America (ODP Site 1058) we show that the oceanographic development at subsurface (thermocline) level is substantially different from the surface ocean. Most notably, surface temperatures and salinities peak during the penultimate deglaciation (Termination II) and early MIS 5e, implying that subtropical surface ocean heat and salt accumulation might have resulted from a sluggish northward heat transport. In contrast, maximum thermocline temperatures are reached during late MIS 5e when surface temperatures are already declining. We argue that the subsurface warming originated from intensified Ekman downwelling in the Subtropical Gyre due to enhanced wind stress. During MIS 5a-d a tight interplay of the subtropical upper ocean hydrography to high latitude millennial-scale cold events can be observed. At Blake Ridge, the most pronounced of these high latitude cold events are related to surface warming and salt accumulation in the (sub)surface. Similar to Termination II, heat accumulated in the Subtropical Gyre probably due to a reduced Atlantic Meridional Overturning Circulation. Additionally, a southward shift and intensification of the subtropical wind belts lead to a decrease of on-site precipitation and enhanced evaporation, coupled to intensified gyre circulation. Subsequently, the northward advection of these warm and saline water likely contributed to the fast resumption of the overturning circulation at the end of these high latitude cold events.
Resumo:
During the late Pliocene (~3 to 2.5 Ma), oceanic records of opal and C37 alkenone accumulation from around the world show a secular shift towards lower values in the high latitudes and higher values in the low and mid latitudes. These shifts are broadly coincident with the intensification of northern hemisphere glaciation and are suggestive of changes in export productivity, with potential implications for Pliocene atmospheric carbon dioxide concentrations. The interpretation of a global latitudinal shift in productivity, however, requires testing because of the potential uncertainties associated with site to site comparisons of records that can be influenced by highly nonlinear processes associated with production, export, and preservation. Here, we assess the inferred Pliocene latitudinal productivity shift interpretation by presenting new records of C37 alkenone accumulation from Ocean Drilling Program (ODP) Site 982 in the North Atlantic and biotic assemblages (calcareous nannoplankton) from this site and ODP Site 846 in the eastern tropical Pacific. Our results corroborate the interpretation of C37 alkenone accumulation as a proxy for gross export productivity at these sites, indicating that large-scale productivity decreases at high latitudes and increases at tropical sites are recorded robustly. We conclude that the intensification of northern hemisphere glaciation during the late Pliocene was associated with a profound reorganisation of ocean biogeochemistry.
Grain-size, lithic grains, foraminifera-derived and dinocyst-derived data of sediment core MD99-2281
Resumo:
The last glacial period was punctuated by abrupt climatic events with extrema known as Heinrich and Dansgaard-Oeschger events. These millennial events have been the subject of many paleoreconstructions and model experiments in the past decades, but yet the hydrological processes involved remain elusive. In the present work, high-resolution analyses were conducted on the 12-42 ka BP section of core MD99-2281 retrieved southwest of the Faeroe Islands, and combined with analyses conducted in two previous studies (Zumaque et al., 2012; Caulle et al., 2013). Such a multiproxy approach, coupling micropaleontological, geochemical and sedimentological analyses, allows us to track surface, subsurface, and deep hydrological processes occurring during these rapid climatic changes. Records indicate that the coldest episodes of the studied period (Greenland stadials and Heinrich stadials) were characterized by a strong stratification of surface waters. This surface stratification seems to have played a key role in the dynamics of subsurface and deep-water masses. Indeed, periods of high surface stratification are marked by a coupling of subsurface and deep circulations which sharply weaken at the beginning of stadials, while surface conditions progressively deteriorate throughout these cold episodes; conversely, periods of decreasing surface stratification (Greenland interstadials) are characterized by a coupling of surface and deep hydrological processes, with progressively milder surface conditions and gradual intensification of the deep circulation, while the vigor of the subsurface northward Atlantic flow remains constantly high. Our results also reveal different and atypical hydrological signatures during Heinrich stadials (HSs): while HS1 and HS4 exhibit a "usual" scheme with reduced overturning circulation, a relatively active North Atlantic circulation seems to have prevailed during HS2, and HS3 seems to have experienced a re-intensification of this circulation during the middle of the event. Our findings thus bring valuable information to better understand hydrological processes occurring in a key area during the abrupt climatic shifts of the last glacial period.
Resumo:
Analysis of 944 single specimens of three species of late Maastrichtian planktonic foraminifera (Racemiguembelina fructicosa, Contusotruncana contusa, and Rugoglobigerina rugosa) from 38 samples spanning the last 3 Myr of the Cretaceous shows consistent isotopic trends through time, consistent isotopic differences among taxa, and high within-sample isotopic variability throughout. Within-sample variability does not change systematically through time for any taxon, but average d18O values decrease by approx. 1.5 per mill, and average d13C values diverge up section. Comparing taxa, average d18O values are similar within most samples, but average d13C values generally decrease from R. fructicosa to R. rugosa to C. contusa. In addition, the within-sample variability of individual d13C measurements is larger for R. fructicosa than for either C. contusa or R. rugosa, an observation which is consistent with a photosymbiotic habitat for R. fructicosa. In terms of Maastrichtian paleoceanography the negative d18O trend of approx. 1.5 per mill corresponds to a temperature increase of approx. 6°C, and the divergence of d13C values up section suggests an increasingly stratified water column in the western Atlantic through the late Maastrichtian. We suggest that these trends are best explained by increasing import of South Atlantic waters into the North Atlantic and an intensification of the Northern Hemisphere polar front.
Resumo:
Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19C, at 10.5 and 7 ka, to 15C at present. This trend is interrupted by a fall from 18C during the Roman and Medieval Warm Periods to 16C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic- Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.