Grain-size, lithic grains, foraminifera-derived and dinocyst-derived data of sediment core MD99-2281


Autoria(s): Wary, Mélanie; Eynaud, Frédérique; Sabine, Christopher L; Zaragosi, Sebastien; Rossignol, Pascale E; Malaizé, Bruno; Palis, Edouard; Zumaque, Jena; Caulle, Clémence; Penaud, Aurélie; Michel, Elisabeth; Charlier, Karine
Cobertura

LATITUDE: 60.341833 * LONGITUDE: -9.455667 * DATE/TIME START: 1999-08-01T00:00:00 * DATE/TIME END: 1999-08-01T00:00:00 * MINIMUM DEPTH, sediment/rock: 0.400 m * MAXIMUM DEPTH, sediment/rock: 21.700 m

Data(s)

01/02/2015

Resumo

The last glacial period was punctuated by abrupt climatic events with extrema known as Heinrich and Dansgaard-Oeschger events. These millennial events have been the subject of many paleoreconstructions and model experiments in the past decades, but yet the hydrological processes involved remain elusive. In the present work, high-resolution analyses were conducted on the 12-42 ka BP section of core MD99-2281 retrieved southwest of the Faeroe Islands, and combined with analyses conducted in two previous studies (Zumaque et al., 2012; Caulle et al., 2013). Such a multiproxy approach, coupling micropaleontological, geochemical and sedimentological analyses, allows us to track surface, subsurface, and deep hydrological processes occurring during these rapid climatic changes. Records indicate that the coldest episodes of the studied period (Greenland stadials and Heinrich stadials) were characterized by a strong stratification of surface waters. This surface stratification seems to have played a key role in the dynamics of subsurface and deep-water masses. Indeed, periods of high surface stratification are marked by a coupling of subsurface and deep circulations which sharply weaken at the beginning of stadials, while surface conditions progressively deteriorate throughout these cold episodes; conversely, periods of decreasing surface stratification (Greenland interstadials) are characterized by a coupling of surface and deep hydrological processes, with progressively milder surface conditions and gradual intensification of the deep circulation, while the vigor of the subsurface northward Atlantic flow remains constantly high. Our results also reveal different and atypical hydrological signatures during Heinrich stadials (HSs): while HS1 and HS4 exhibit a "usual" scheme with reduced overturning circulation, a relatively active North Atlantic circulation seems to have prevailed during HS2, and HS3 seems to have experienced a re-intensification of this circulation during the middle of the event. Our findings thus bring valuable information to better understand hydrological processes occurring in a key area during the abrupt climatic shifts of the last glacial period.

Formato

text/tab-separated-values, 4046 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.857750

doi:10.1594/PANGAEA.857750

Idioma(s)

en

Publicador

PANGAEA

Relação

Caulle, Clémence; Penaud, Aurélie; Eynaud, Frédérique; Zaragosi, Sebastien; Roche, Didier M; Michel, Elisabeth; Boulay, Sebastien; Richter, Thomas (2013): Sea-surface hydrographical conditions off South Faeroes and within the North-Eastern North Atlantic through MIS 2: the response of dinocysts. Journal of Quaternary Science, 28(3), 217-228, doi:10.1002/jqs.2601

Zumaque, Jena; Eynaud, Frédérique; Zaragosi, Sebastien; Marret, Fabienne; Matsuzaki, Hiroyuki; Kissel, Catherine; Roche, Didier M; Malaizé, Bruno; Michel, Elisabeth; Billy, Isabelle; Richter, Thomas; Palis, Edouard (2012): An ocean-ice coupled response during the last glacial: a view from a marine isotopic stage 3 record south of the Faeroe Shetland Gateway. Climate of the Past, 8(6), 1997-2017, doi:10.5194/cp-8-1997-2012

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Wary, Mélanie; Eynaud, Frédérique; Sabine, Christopher L; Zaragosi, Sebastien; Rossignol, Pascale E; Malaizé, Bruno; Palis, Edouard; Zumaque, Jena; Caulle, Clémence; Penaud, Aurélie; Michel, Elisabeth; Charlier, Karine (2015): Stratification of surface waters during the last glacial millennial climatic events: a key factor in subsurface and deep-water mass dynamics. Climate of the Past, 11(11), 1507-1525, doi:10.5194/cp-11-1507-2015

Palavras-Chave #63F/NL; AGE; CALYPSO; Calypso Corer; Counting <150 µm; Counting >150 µm fraction; DEPTH, sediment/rock; Dinoflagellate cyst per volume; Faeroes Bank; Foraminifera, benthic; Foraminifera, planktic; Grain size, Mastersizer S, Malvern Instrument Inc.; Grain size, mean; IMAGES V; Lithic grains; Marion Dufresne; Mass spectrometer Optima Micromass; MD114; MD99-2281; Modern analog technique (MAT); Neogloboquadrina pachyderma sinistral; Neogloboquadrina pachyderma sinistral, d18O; Percentile 10; Percentile 50; Percentile 90; Ratio; Sea surface salinity, summer; Sea surface salinity, winter; Sea surface temperature, summer; Sea surface temperature, winter; Subsurface temperature, summer; Subsurface temperature, winter
Tipo

Dataset