938 resultados para front end studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vertical profiles of dissolved and particulate 230Th and 231Pa were obtained across the Antarctic Circumpolar Current (ACC) in the southern Atlantic. North of the Polar Front, dissolved and total 230Th increase with depth in conformity with published scavenging models. There is no depletion of 230Th or 231Pa in the water column south of the Polar Front, thought to be an area of enhanced biological productivity. 230Th concentrations increase three-fold to the Weddell Sea across the ACC. Dissolved and total 231Pa concentrations are relatively constant below 500 m depth at about 0.3 dpm m**-3, and change little with depth or latitude. The results from the Weddell Gyre are explained by a mixing-scavenging model that takes into account the input of lower Circumpolar Deep Water through upwelling, which is the main source of water in the Weddell Gyre and is enriched in 230Th but not in 231Pa. 230Th accumulates in the Weddell Gyre as a result of a reduction in the scavenging rate and by ingrowth from 234U. Ingrowth is more significant for 230Th than for 231Pa because the residence time of water in the gyre (about 35 years) is similar to the scavenging residence time of Th in the south Atlantic (29 years) but shorter than that of Pa (120 years). It is argued that changes in 230Th accumulation in the past may reflect changes in water residence time and in the formation rate of Weddell Sea Deep Water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Planktonic foraminifera are used to identify late Pliocene-Quaternary near surface water masses on the northeastern flank of Chatham Rise by comparison with faunas in core-tops east of New Zealand. In an overview study, distance measures, ordinations, and discriminant analysis are applied to 32 faunas from Site 1123B to identify similar faunas among 35 core-tops between 35 and 61°S east of New Zealand. Many Site 1123B faunas in the 2.72 myr interval sampled compare with those in core-tops on the northern side of Chatham Rise from a similar latitude, and are identified as transitional zone assemblages now associated with the subtropical gyre. This result is consistent with studies of late Quaternary planktonic foraminifera from this region and suggests that, typically, the Subtropical Front was locked to Chatham Rise through glacial and interglacial periods, at least back to the late Pliocene. However, a fauna at ca. 1.17 Ma compares with subpolar assemblages in core-tops between 44 and 48°S and identifies cooler surface water. Expectedly, closer sampling may reveal additional periods when southern water moved over the northeastern flank of Chatham Rise. Although the dominance of Globorotalia inflata, a species typical of the southern margin of subtropical gyres, is a principal feature of Site 1123B faunas, in a minority it is replaced as the most abundant species by dextral populations of Neogloboquadrina pachyderma, particularly about the time of the middle Pleistocene transition. Close analogues of these variant transitional assemblages are not present in core-tops about Chatham Rise but sediment trap and coretop data from other regions suggest that they identify high fertility in the mixed layer associated with upwelling or mixing of water masses. The proportion of sinistrally coiled Neogloboquadrina pachyderma rises to ca. 0.6 between ca. 2.45 and 2.57 Ma, soon after the intensification of Northern Hemisphere glaciation. Although the coiling data indicate subantarctic near surface water, the species remains rare. As the faunas retain their transitional zone character, only minor entrainment of subantarctic water may have occurred.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Without doubt, global climate change is directly linked to the anthropogenic release of greenhouse gases such as carbon dioxide (CO2) and methane (UN IPCC-Report 2007). Therefore, research efforts to comprehend the global carbon cycle have increased during the last years. In the context of the observed changes, it is of particular interest to decipher the role of the hydro-, bio- and atmospheres and how the different compartments of the earth system are affected by the increase of atmospheric CO2. Due to its huge carbon inventory, the marine carbon cycle represents the most important component in this respect. Numerous findings suggest that the Southern Ocean plays a key role in terms of oceanic CO2 uptake. However, an exact quantification of such fluxes of material is hard to achieve for large areas, not least on account of the inaccessibility of this remote region. In particular, there exist so far only few accurate data for benthic carbon fluxes. The latter can be derived from high resolution pore water oxygen profiles, as one possible method. However the ex situ flux determinations carried out on sediment cores, tend to suffer from temperature and pressure artefacts. Alternatively, oxygen microprofiles can be measured in situ, i.e. at the seafloor. Until now, no such data have been published for the Southern Ocean. During the Antarctic Expedition ANT-XXI/4, within the framework of this thesis, in situ and ex situ oxygen profiles were measured and used to derive benthic organic carbon fluxes. Having both types of measurements from the same locations, it was possible to establish a depth-related correction function which was applied subsequently to revise published and additional unpublished carbon fluxes to the seafloor. This resulted in a consistent data base of benthic carbon inputs covering many important sub-regions of the Southern Ocean including the Amundsen and Bellingshausen Seas (southern Pacific), Scotia and Weddell Seas (southern South Atlantic) as well as the Crozet Basin (southern Indian Ocean). Including additional locations on the Antarctic Shelf, there are now 134 new and revised measurement locations, covering almost 180° of the Southern Ocean, for which benthic organic carbon fluxes and sedimentary oxygen penetration depth values are available. Further, benthic carbon fluxes were empirically related to dominant diatom distributions in surface sediments as well as to long-term remotely sensed chlorophyll-a estimates. The comparison of these results with benthic carbon fluxes of the entire Atlantic Ocean reveals significantly higher export efficiencies for the Southern Ocean than have previously been assumed, especially for the area of the opal belt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Through the processes of the biological pump, carbon is exported to the deep ocean in the form of dissolved and particulate organic matter. There are several ways by which downward export fluxes can be estimated. The great attraction of the 234Th technique is that its fundamental operation allows a downward flux rate to be determined from a single water column profile of thorium coupled to an estimate of POC/234Th ratio in sinking matter. We present a database of 723 estimates of organic carbon export from the surface ocean derived from the 234Th technique. Data were collected from tables in papers published between 1985 and 2013 only. We also present sampling dates, publication dates and sampling areas. Most of the open ocean Longhurst provinces are represented by several measurements. However, the Western Pacific, the Atlantic Arctic, South Pacific and the South Indian Ocean are not well represented. There is a variety of integration depths ranging from surface to 220m. Globally the fluxes ranged from -22 to 125 mmol of C/m**2/d. We believe that this database is important for providing new global estimate of the magnitude of the biological carbon pump.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of fluid release from the subducting slab beneath the Izu arc volcanic front (Izu VF) was examined by measuring B concentrations and B isotope ratios in the Neogene fallout tephra (ODP Site 782A). Both were measured by secondary ion mass spectrometry, in a subset of matrix glasses and glassy plagioclase-hosted melt inclusions selected from material previously analyzed for major and trace elements (glasses) and radiogenic isotopes (Sr, Nd, Pb; bulk tephra). These tephra glasses have high B abundances (~10-60 ppm) and heavy delta11B values (+4.5? to +12.0?), extending the previously reported range for Izu VF rocks (delta11B, +7.0? to +7.3?). The glasses show striking negative correlations of delta11B with large ion lithophile element (LILE)/Nb ratios. These correlations cannot be explained by mixing two separate slab fluids, originating from the subducting sediment and the subducting basaltic crust, respectively (model A). Two alternative models (models B and C) are proposed. Model B proposes that the inverse correlations are inherited from altered oceanic crust (AOC), which shows a systematic decrease of B and LILE with increasing depth (from basaltic layer 2A to layer 3), paralleled by an increase in delta11B (from ~ +1? to +10? to +24?). In this model, the contribution of sedimentary B is insignificant (<4% of B in the Izu VF rocks). Model C explains the correlation as a mixture of a low-delta11B (~ +1?) 'composite' slab fluid (a mixture of metasediment- and metabasalt-derived fluids) with a metasomatized mantle wedge containing elevated B (~1-2 ppm) and heavy delta11B (~ +14?). The mantle wedge was likely metasomatized by 11B-rich fluids beneath the outer forearc, and subsequently down dragged to arc front depths by the descending slab. Pb-B isotope systematics indicate that, at arc front depths, ~ 53% of the B in the Izu VF is derived from the wedge. This implies that the heavy delta11B values of Izu VF rocks are largely a result of fluid fractionation, and do not reflect variations in slab source provenance (i.e. subducting sediment vs. basaltic crust). Since the B content of the peridotite at the outer forearc (7-58 ppm B, mean 24 +/- 16 ppm) is much higher than beneath the arc front (~1-2 ppm B), the hydrated mantle wedge must have released a B-rich fluid on its downward path. This 'wedge flux' can explain (1) the across-arc decrease in B and delta11B (e.g. Izu, Kuriles), without requiring a progressive decrease in fluid flux from the subducting slab, and (2) the thermal structure of volcanic arcs, as reflected in the B and delta11B variations of volcanic arc rocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gurile Dunarii 1978 dataset contains zooplankton data collected in May and October 1978 in 14 station allong 3 transect in front of the Danube Delta (45°05' - 44°45'N, 30°02'- 29°27'E). Zooplankton sampling was undertaken at 14 stations where samples were collected using a Juday closing net in the 0-10, 10-20, 20-30, 30-40 and 40-50m layer (depending also on the water masses). The dataset includes samples analysed for mesozooplankton species composition and abundance. Sampling volume was estimated by multiplying the mouth area with the wire length. Taxon-specific mesozooplankton abundance was count under microscope. Total abundance is the sum of the counted individuals. Total biomass Fodder, Rotifera , Ctenophora and Noctiluca was estimated using a tabel with wet weight for each species an stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new radiolarian-based transfer function for sea surface temperature (SST) estimations has been developed from 23 taxa and taxa groups in 53 surface sediment samples recovered between 35° and 72°S in the Atlantic sector of the Southern Ocean. For the selection of taxa and taxa groups ecological information from water column studies was considered. The transfer function allows the estimation of austral summer SST (December-March) ranging between -1 and 18°C with a standard error of estimate of 1.2°C. SST estimates from selected late Pleistocene squences were sucessfully compared with independend paleotemperature estimates derived from a diatom transfer function. This shows that radiolarians provide an excellent tool for paleotemperature reconstructions in Pleistocene sediments of the Southern Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon fixation by phytoplankton plays a key role in the uptake of atmospheric CO2 in the Southern Ocean. Yet, it still remains unclear how efficiently the particulate organic carbon (POC) is exported and transferred from ocean surface waters to depth during phytoplankton blooms. In addition, little is known about the processes that control the flux attenuation within the upper twilight zone. Here, we present results of downward POC and particulate organic nitrogen fluxes during the decline of a vast diatom bloom in the Atlantic sector of the Southern Ocean in summer 2012. We used thorium-234 (234Th) as a particle tracer in combination with drifting sediment traps (ST). Their simultaneous use evidenced a sustained high export rate of 234Th at 100 m depth in the weeks prior to and during the sampling period. The entire study area, of approximately 8000 km**2, showed similar vertical export fluxes in spite of the heterogeneity in phytoplankton standing stocks and productivity, indicating a decoupling between production and export. The POC fluxes at 100 m were high, averaging 26 ± 15 mmol C/m**2/d, although the strength of the biological pump was generally low. Only <20% of the daily primary production reached 100 m, presumably due to an active recycling of carbon and nutrients. Pigment analyses indicated that direct sinking of diatoms likely caused the high POC transfer efficiencies (~60%) observed between 100 and 300 m, although faecal pellets and transport of POC linked to zooplankton vertical migration might have also contributed to downward fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern sedimentary total organic carbon (TOC) content as a proxy for surface water export production was mapped on the shelf and on the upper continental slope of the Benguela upwelling system using 137 core tops. Shelf maxima in TOC can be correlated with maxima in surface water productivity. On the slope, high TOC contents are observed offshore from sites of strong modern upwelling. Estimates of modern TOC mass accumulation rates (MAR) show that approximately 85% of the total is accumulating on the shelf. TOC MAR were calculated, mapped, and budgeted for the Holocene and for the Last Glacial Maximum (LGM) using 19 sediment cores from the continental slope. During the LGM, centers of deposition and production have migrated offshore with respect to their Holocene positions. TOC accumulation on the continental slope was approximately 84% higher during the LGM than during the Holocene, possibly reflecting enhanced productivity. The TOC distribution patterns and sediment echo sounding data suggest that undercurrents strongly influence the sedimentation off Namibia. Winnowing and focusing result in great lateral heterogeneity of sedimentation rates and sediment properties. Individual cores therefore do not necessarily reflect general changes in export production. These results highlight the need for detailed regional studies based on a large number of sediment cores for highly heterogeneous high-productivity areas in order to derive general statements on total fluxes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smith, Hinchman & Grylls, architects. W.B. Wood Co., construction. On verso: University of Michigan News Service, 3564 Administration Building, Ann Arbor, Michigan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Vehicle Safety Compliance, Washington, D.C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproduced from type-written copy.